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Content 

• Preliminaries 
– Introduction 

– Rigid-body & affine transformation 

– Function optimisation 

– Transformations and interpolation 

– Pre-processing overview 
 

• Within-subject 
 

• Between-subject 
 

• Smoothing 
 

• Conclusion 
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Image registration 

Most “spatial pre-processing” involves 
aligning images together. 

 

Two components: 

• Registration –  
i.e. Optimise the parameters that describe spatial 
transformations between the images. 

• Transformation –  
i.e. Re-sample according to the determined 
transformation parameters. 
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Label based techniques 

• Homologous labels (points, lines, surfaces) in 
the source and the reference images 

 find transformations that best superpose them 

• Labels are identified (manually/semi-automatically)  
 time consuming and subjective process 
 few identifiable discrete points in the brain 

• Lines and surfaces, e.g. contours, can be 
extracted (semi-)automatically 

• Best match = minimal distance 
Question: how do you measure “distance”? 
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Label based techniques 

• Homologous labels (points, lines, surfaces) in 
the source and the reference images 

 find transformations that best superpose them 

 

 

 

 

 

 

Not so obvious in the brain! 
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Intensity based techniques 

By minimizing a “distance” between the whole  
source image and the whole  reference image: 

 Need a scalar measure (=distance) to optimize 

 Depends on the image content… 

 

Finding a best match = global optimum? 

 but susceptible to poor starting estimates 

 

Hybrid approaches :  

1. label/manual, then  

2. intensity based methods 
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Optimisation 

• Image registration is done by optimisation. 
 

 

• Optimisation involves finding some “best” 
parameters according to an “objective 
function” (to be either minimised or maximised) 
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Value of parameter 

Objective 
function 
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(global optimum) 

Local optimum Local optimum 



Optimisation, multiple parameters 
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Contours of a two-dimensional 
objective function “landscape” 

Optimum 

No grid exploration at “high dimension” ! 



Optimisation 

Because registration 
only finds a local 
optimum, some 
manual reorienting of 
the images may be 
needed before doing 
anything else in SPM. 
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An MNI-space image 
from spm12/canonical 

directory. 



2D Affine Transforms 

• Translations by tx and ty 

x1 = x0 + tx 

y1 = y0 + ty 

• Rotation around the origin 
by  radians 

x1 =  cos() x0 + sin() y0 

y1 = -sin() x0 + cos() y0 

• Zooms by sx and sy: 

x1 = sx x0 

y1 = sy y0 

•  Shear hx 

 x1 = x0 + hx y0 

 y1 =  y0 

 12 Same for hy 



2D Affine Transforms 

• Translations by tx and ty 

x1 = 1 x0 + 0 y0 + tx 

y1 = 0 x0 + 1 y0 + ty 

• Rotation around the origin 
by  radians 

x1 =  cos() x0 + sin() y0 + 0  

y1 = -sin() x0 + cos() y0 + 0 

• Zooms by sx and sy: 

x1 = sx x0 + 0 y0 + 0 

y1 = 0 x0 + sy y0 + 0 

•  Shear hx 

 x1 = 1 x0  + hx y0 + 0 

 y1 =  0 x0 + 1  y0 + 0 

 13 Same for hy 



2D Affine transform 

• Operations can be represented by:  

x1 = m11x0 + m12y0 + m13 

y1 = m21x0 + m22y0 + m23 

 

• …or as matrices: 

 p1 = M p0 

 

 

• Parallel lines remain parallel  
 

Rigid-body transformations are a subset of 
“affine transformation” 
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3D Affine transform 

• Operations can be represented by:  

x1 = m11x0 + m12y0 + m13z0 + m14 

y1 = m21x0 + m22y0 + m23z0 + m24 

z1 = m31x0 + m32y0 + m33z0 + m34  

• Or as matrices: 

  p1 = M p0 

 

 

• Parallel lines remain parallel  

Rigid-body transformations are a subset of 
“affine transformation” 
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Rigid-body transformations 

• Assume that brain of the same subject 
doesn’t change shape or size in the 
scanner. 

– Head can move, but remains the same shape 
and size. 

– Some exceptions: 

• Image distortions. 

• Brain slops about slightly because of gravity. 

• Brain growth or atrophy over time. 

• If the subject’s head moves, we need to 
“match” the images. 

 Do this by image registration. 
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3D Rigid-body Transform 

• A 3D rigid body transform is an affine 
transform defined by: 

– 3 translations - in X, Y & Z directions 

– 3 rotations - about X, Y & Z axes 

 

 

 

 

• The order of the operations matters! 
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Voxel-to-world transformation 

“Voxel-to-world transforms” =  

 Affine transform M associated with each 
image  

 

• Maps from voxels (i=[1...Ni], j=[1...Nj], 
k=[1...Nk]) to some real world co-ordinate 

system [x, y, z]. e.g., 

– Scanner co-ordinates (images from DICOM) or MNI 
coordinates (spatially normalised) 

– Includes voxel size, head orientation &  
“space origin” 

 

• World coordinates are (usually) in millimetres! 
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Image resampling 
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A continuous function is represented by a linear 
combination of basis functions 

1D interpolation 

2D 
interpolation 
kernels 



Image resampling 
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• Nearest neighbour 

– Take the value of 
the closest voxel 

• Tri-linear 

– Just a weighted 
average of the 
neighbouring voxels 

– f5 = f1 x2 + f2 x1 

– f6 = f3 x2 + f4 x1 

– f7 = f5 y2 + f6 y1 



Image resampling, example 1 
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Image resampling, example 2 
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Binary (or index) image 

→ need to preserve property  

→ no need for smooth interpolation but… 



Various registration problems 
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Brain 
images 

Within 
subject 

Between 
subjects 

Within 
modality 

Between 
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Rigid 
body 
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contrast 

Image 
warping 

Different 
contrast 



Pre-processing overview 
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Various registration problems 
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Content 

• Preliminaries 
 

• Within-subject 
– Realignment 

• Minimising mean-squared difference / Residual artifacts 

– EPI Distortion correction 

• FieldMap Toolbox / Movement by distortion interaction 

– Coregistration 

• Maximising mutual information 

 

• Between-subject 
 

• Smoothing 
 

• Conclusion 
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Mean-squared difference 

 

 

 
 

 

• Minimising mean-squared difference works for 
intra-modal registration 

 
• Simple relationship between intensities in one 

image, versus those in the other 

(Assumes normally distributed differences, i.e. residuals) 
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Within-subject registration 

• Realign images I (fixed) and J (moving):  

• Criteria to optimize: 
  → 

       

• c(I,J) depends on J’s orientation, which 
depends on R’s 6 parameters 
– Optimize c(I,J) according to those 6 parameters ! 
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Motion estimates 

“Browse” 
option from 
Check Reg 
allows fMRI 
time series 
to be shown 
as a movie. 



Residual errors from aligned fMRI 

• Re-sampling can introduce interpolation errors 

– tri-linear interpolation ~ smoothing 

• Gaps between slices can cause aliasing artefacts 

• Slices are not acquired simultaneously 

– rapid movements not accounted for by rigid body model 

• Image artefacts may not move according to a 
rigid body model 

– image distortion, image dropout, Nyquist ghost 

• BOLD signal changes influence the estimated 
motion. 

  Functions of the estimated motion parameters 

 can be modelled as confounds in subsequent 
 analyses 
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EPI distortion 

• Magnetic susceptibility 
differs among tissues. 

 

• Greatest difference is 
between air and tissue. 

 

• Subject disrupts B0 
field, rendering it 
inhomogeneous 

 

• Distortions in phase-
encode direction 
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FieldMap toolbox 

• Computes a voxel-
displacement map 
(VDM) from 
“fieldmap” scans. 

 

• Used to correct 
distortions in EPI. 
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Phase unwrapping 

• Phase of complex 
data used. 

• - π < phase < π 

• Phase-unwrapping 
needed. 

• Phase is poorly 
defined when 
magnitude is small 
relative to noise 

 Part that is most 

likely to go wrong. 

 

 
33 



Movement-by-distortion interaction 
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“Realign & Unwarp” 
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Correcting for distortion changes 
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Estimate 
movement 
parameters. 

Estimate new distortion 
fields for each image: 

• estimate rate of change 
of field with respect to 
the current estimate of 
movement parameters 
in pitch and roll. 

Estimate reference from 
mean of all scans. 

Unwarp time 
series. 

0B  
0B  

 +

 

Andersson et al, 2001 



Various registration problems 
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Brain 
images 

Within 
subject 

Between 
subjects 

Within 
modality 

X 

Between 
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Rigid 
body 
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contrast 

Image 
warping 

Different 
contrast 



“Coregistration” 

• Inter-modal registration. 

• Match images from same 
subject but different 
modalities: 

– anatomical localisation of 
single subject activations 

– achieve more precise spatial 
normalisation of functional 
image using anatomical 
image. 
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Joint histogram & Mutual information 
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Mutual Information, real case 

• Used for between-modality registration 

• Derived from joint histograms 

• MI= ab P(a,b) log2 [P(a,b)/( P(a) P(b) )] 

– Related to entropy: MI = -H(a,b) + H(a) + H(b) 

Where H(a) = -a P(a) log2P(a) and  H(a,b) = -ab P(a,b) log2P(a,b) 



Within-subject registration 

• Realign images I (fixed) and J (moving):  

• Criteria to optimize: 
  → 

       

• c(I,J) depends on J’s orientation, which 
depends on R’s 6 parameters 
– Optimize c(I,J) according to those 6 parameters ! 

41 

R=

1 0 0 Xtrans

0 1 0 Ytrans

0 0 1 Ztrans

0 0 0 1

æ

è

ç
ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷
÷

´

1 0 0 0

0 cosf sinf 0

0 -sinf cosf 0

0 0 0 1

æ

è

ç
ç
ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷
÷
÷

´

cosq 0 sinq 0

0 1 0 0

-sinq 0 cosq 0

0 0 0 1

æ

è

ç
ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷
÷

´

cosΩ sinΩ 0 0

-sinΩ cosΩ 0 0

0 0 1 0

0 0 0 1

æ

è

ç
ç
ç
ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
÷
÷
÷

Objective 
function 

Value of 1 parameter 

),(),( JIMIJIc 

Most probable solution 
(global optimum) 

Local optimum 

Local optimum 



“CheckReg” to assess alignment 
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CheckReg allows 
contours from one 
image to be shown 

superimposed on 
another 



EPI dropout and distortion 
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EPI EPI EPI 

structural structural structural 



Voxel-to-world transformation 

“Voxel-to-world transforms” =  

 Affine transform M associated with each 
image  

 

• Maps from voxels (i=[1...Ni], j=[1...Nj], 
k=[1...Nk]) to some real world co-ordinate 

system [x, y, z]. e.g., 

– Scanner co-ordinates (images from DICOM) or MNI 
coordinates (spatially normalised) 

– Includes voxel size, head orientation &  
“space origin” 

 

• World coordinates are (usually) in millimetres! 
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Voxel-to-world transformation 

 

• Registering image B (source) to image A 
(target) will update B’s voxel-to-world 
mapping. 
 

Img A: vx   mm 
 

Img B: vx   mm 
 

• Mapping from voxels in B to voxels in A is 
by combining MB and R: M*B = MB R 

– B-to-world using M*B, then world-to-A using 
MA

-1   M*B MA
-1 
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MA 

MB 
R 



Various registration problems 
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Brain 
images 

Within 
subject 

Between 
subjects 
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X X 

Between 
modality 

X 

Rigid 
body 
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contrast 

Image 
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Content 

• Preliminaries 
 

• Within-subject 
 

• Between-subject 
Unified segmentation for spatial normalisation 

– Gaussian mixture model 

– Intensity non-uniformity correction 

– Deformed tissue probability maps 
 

• Smoothing 
 

• Conclusion 
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Pre-processing overview 
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Between subjects 

Brains of different subjects vary in shape 
and size. 
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Between subjects 
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Between subjects 

Brains of different subjects vary in shape 
and size. 

 Need to bring them all into a common 

anatomical space. 

– Examine homologous regions across subjects 

• Improve anatomical specificity 

• Improve sensitivity 

– Report findings in a common anatomical space 
(e.g. MNI space) 
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T&T atlas vs MNI template 

52 

The MNI template follows the convention of T&T, but does NOT match 
the particular brain 
 

Recommended reading: http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach  

The Talairach & Tournoux Atlas The MNI/ICBM AVG152 Template 

http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach


Between subjects 

• Brains of different subjects vary in shape and 
size. 

  Need to bring them all into a common 

 anatomical space. 

– Examine homologous regions across subjects 

• Improve anatomical specificity 

• Improve sensitivity 

– Report findings in a common anatomical space 
(e.g. MNI space) 

• In SPM12, alignment is achieved by matching 
tissue classes, i.e. GM with GM, WM with WM,… 
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Normalise/Segment 

• This is the same 
algorithm as for tissue 
segmentation. 

 

• Combines: 

– Mixture of Gaussians 
(MOG) 

– Bias Correction 
Component 

– Warping (Non-linear 
Registration) Component 
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Spatial normalisation 

• Default spatial 
normalisation in 
SPM12 estimates 
nonlinear warps that 
match tissue 
probability maps to the 
individual image. 

 

• Spatial normalisation 
achieved using the 
inverse of this 
transform. 
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Segmentation 

• Segmentation in SPM12 
also estimates a spatial 
transformation that can 
be used for spatially 
normalising images. 

 

• It uses a generative 
model, which involves: 

– Mixture of Gaussians 
(MOG) 

– Warping (Non-linear 
Registration) Component 

– Bias Correction 
Component 
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Tissue intensity distributions (T1w-MRI) 
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TPM’s 

Tissue probability 
maps in SPM12. 

 

• GM, WM & CSF 

• Additional non-
brain tissue 
classes  

 

 defines the 

template space 
= reference! 
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Modelling deformations, affine transform 

12 parameter affine transform 

–3 translations 

–3 rotations 

–3 zooms 

–3 shears 

  

 Fits overall shape and size 

 

 Need warping for local  

 deformation 
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Spatial normalisation results 
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Affine registration 



Modelling elastic deformations, “warps” 

• Tissue probability 

images are warped 

to match the 

subject 

 

• The inverse 

transform warps to 

the TPMs 

 

• Warps are constrained 

to be reasonable by 

penalising extreme 

distortions (bending 

energy) 
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Non-linear warping, example 
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Non-linear warping, example 
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For each voxel-centre in 
blank sheet. 

Go to original image 
and find intensity at 
“warped” co-ordinate 

Get position in 
original space 
by adding 
pertinent 
displacement. 
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Displacement map 

64 
x-displacement 

y-displacement 

x-displacement, 
black: leftward 

translation 
white: rightward 

translation 
gray: no translation 

y-displacement, 
black: downward 

translation 
white: upward 

translation 
grey: no translation 



Displacement map modelling 

• To prevent 
impossible 
deformations we 
restrict it to be a 
linear combination 
of permitted basis-
warps. 

 

• For example use 
the discrete cosine 
set  smooth 

deformation! 
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Displacement maps, example 
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+ + + + + + + + 

+ + + + + + + + 

+ + + + + + + + 

+ + + + + + + + 

+ + + + + + + + 

+ + + + + + + + 

+ + + + + + + + 

+ + + + + + + = 

Each basis-warp multiplied by a weight 

x-component of 
square-to-ellipse map 

Square-to-ellipse map 



Displacement maps, example 
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Modelling deformations, warps 

• Tissue probability 

images are warped 

to match the 

subject 

 

• The inverse 

transform warps to 

the TPMs 

 

• Warps are constrained 

to be reasonable by 

penalising various 

distortions (energies) 
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Spatial normalisation results 
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Non-linear registration Affine registration 



Modelling inhomogeneity 

A multiplicative bias field is modelled 
as a spatially smooth image 
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Corrupted image Corrected image Bias Field 



Normalisation & Unified Segmentation 

• MRI imperfections make normalisation harder 

– Differences between sequences, artefacts 

– Intensity inhomogeneity or “bias” field 

• Normalising segmented tissue maps should be 
more robust and precise than using the original 
images (GM-onGM, WM-on-WM, etc.)... 

• … Tissue segmentation benefits from spatially-
aligned prior tissue probability maps (from other 

segmentations) 

 

 Circular reasoning! 
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Iterative optimisation scheme 
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Update tissue 

estimates 

Update bias field 

estimates 
Update deformation 
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Converged? 
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No 

T1w-MRI 
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Segmentation results 
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Tissue 
probability 
maps of 
GM and 

WM 

Spatially 
normalised 
BrainWeb 
phantoms 
(T1, T2, 

PD) 



Tissue intensity distributions (T1w-MRI) 
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Mixture of Gaussians (MoG) 

Classification is based on a Mixture of Gaussians 
model (MOG), which represents the intensity 
probability density by a number of Gaussian 
distributions. 

 

75 Image Intensity 

Frequency 



Gaussian probability density 

If intensities are assumed to be Gaussian of 
mean mk and variance s2

k, then the 
probability of a value yi is: 

 

76 



Non-Gaussian probability density 

A non-Gaussian probability density function 
can be modelled by a Mixture of Gaussians 
(MOG): 
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Mixing proportion - positive and sums to one 



Mixing proportions 

• The mixing proportion gk represents the 
prior probability of a voxel being drawn 
from class  k - irrespective of its intensity. 
 

 

 

 

• So: 
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Probability of whole image 

• If the voxels are assumed to be 
independent, then the probability of the 
whole image is the product of the 
probabilities of each voxel: 

 

 

• It is often easier to work with negative 
log-probabilities: 
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Modelling a bias field 

• A bias field is included, such that the 
required scaling at voxel i, parameterised 
by b, is ri(b). 

 

• Replace the means by mk/ri(b) 

• Replace the variances by (sk/ri(b))2 
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Modelling a bias field 

After rearranging: 
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r(b) y y r(b) 



“Mixing proportions” 

• Tissue probability 
maps for each class 
are included. 

• The probability of 

obtaining class k at 

voxel i, given 

weights g is then: 
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TPMs deformation 

• Tissue probability 
images are 
deformed 
according to 

parameters a. 

• The probability of 

obtaining class k 
at voxel i, given 

weights g and 

parameters a is 
then: 
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The extended US model 

• By combining the modified P(ci=k|) and 

P(yi|ci=k,), the overall objective 

function (E) becomes: 
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The Objective Function 



Optimisation 

• The “best” parameters are those that 
minimise this objective function. 

• Optimisation involves finding them. 

• Begin with starting estimates, and 
repeatedly change them so that the 
objective function decreases each time. 
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Optimisation strategy 

Repeat until convergence... 
 

– Hold g, m, s2 and a constant, and minimise E 
w.r.t. b 

Levenberg-Marquardt strategy, using dE/db and d2E/db2 

– Hold g, m, s2 and b constant, and minimise E 
w.r.t. a 

Levenberg-Marquardt strategy, using dE/da and d2E/da2 

– Hold a and b constant, and minimise E w.r.t. g, 
m and s2 

Use an Expectation Maximisation (EM) strategy. 

end 
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Spatial normalisation, overfitting 

Without regularisation, the non-linear spatial 
normalisation can introduce unnecessary 
warps. 
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Affine 
registration. 

Non-linear 
registration 
without 
regularisation. 

Template 
image 



Linear regularisation 

• Some bias fields and distortions are more 
probable (a priori) than others. 

• Encoded using Bayes rule: 

 

 

• Prior probability distributions can be 
modelled by a multivariate normal 
distribution. 

– Mean vector  ma and mb 

– Covariance matrix Sa and Sb 

– -log[P(a)] = (a-ma)
TSa

-1(a-ma) + const 

 88 



Spatial normalisation, overfitting 

Without regularisation, the non-linear spatial 
normalisation can introduce unnecessary 
warps. 
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Affine 
registration. 

Non-linear 
registration 
using 
regularisation. 

Non-linear 
registration 
without 
regularisation. 

Template 
image 



Old fashioned template matching 
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Minimise mean squared difference from 
image to template image(s) 

Spatial normalisation can be 
weighted so that non-brain voxels 
do not influence the result. 
 

Similar weighting masks can be 
used for normalising lesioned 
brains. 

Template Images 

EPI 

T2 T1 Transm 

PD PET 



Old fashioned template matching 
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Determine the spatial 
transformation that 
minimises the sum of 
squared difference 
between an image and a 
linear combination of one 
or more templates. 
 

Begins with an affine 
registration to match the 
size and position of the 
image. 
 

Followed by a global non-
linear warping to match 
the overall brain shape. 
 

Uses a Bayesian 
framework to 
simultaneously minimize 
the bending energies of 
the warps. 

Spatial 
Normalisation 

Original image 

Template 
image 

Spatially normalised 

Deformation field 



Content 

• Preliminaries 
 

• Within-subject 
 

• Between-subject 
 

• Smoothing 
 

• Conclusion 
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Smoothing, principle 

• Smoothing is done by convolution. 

• Each voxel after smoothing 
effectively becomes the result of 
applying a weighted region of 
interest (ROI). 

• Gaussian function, defined by its “full 

width at half maximum” (FWHM) 

 

 

93 

2D Gaussian 
function 

Before convolution Convolved with a circle 
Convolved with a 

Gaussian 



Smoothing, why blur the data? 

• Improves spatial overlap by blurring over minor 
anatomical differences and registration errors 

• Averaging neighbouring voxels suppresses noise 

(matched filter theorem) 

• Makes data more normally distributed (central limit 

theorem) 

• Reduces the effective number of multiple 
comparisons 
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Gaussian convolution is separable 



Smoothing, kernel size 

Decide a priori, based on: 

• Population, i.e. noise & inter-subject variability 

• Expected activation size 
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Smoothing, kernel size 

Decide a priori, based on: 

• Population, i.e. noise & inter-subject variability 

• Expected activation size 

97 



Smoothing, kernel size 

Decide a priori, based on: 
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Smoothing, kernel size 

Decide a priori, based on: 

• Population, i.e. noise & inter-subject variability 

• Expected activation size 
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Content 

• Preliminaries 
 

• Within-subject 
 

• Between-subject 
 

• Smoothing 
 

• Conclusion 
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Pre-processing overview 
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fMRI time-series 

Motion/Distortion 
Correct 

Coregister 

Deformation 

Estimate 
Spatial Norm 

Spatially 
normalised 

Smooth 

Smoothed 

Statistics or 
whatever 

Template Anatomical MRI 



Alternative pipeline 
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fMRI time-series 

Motion/Distortion 
Correct 

Deformation 

Estimate 
Spatial Norm 

Spatially 
normalised 

Smooth 

Smoothed 

Statistics or 
whatever 

Template 
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