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Estimation of the parameters

i.i.d. assumptions: £~N(0,0°])

OLS estimates: f = (XTX) X7y

B, = 3.9831
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By—7 = {0.6871,1.9598,1.3902, 166.1007, 76.4770, —64.8189}

'B fg = 131.0040
+&
£= W\W/\WJ\,V]\\\

B~N(B,a2(XTX)™V) | | 6% = £




GLM & Mass univariate approach
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Hypothesis testing

To test a hypothesis, we construct “test statistics”.

e Null Hypothesis H,

Typically what we want to disprove (no effect).
— Alternative Hypothesis H, expresses outcome of interest

e Test Statistic T

The test statistic summarises
evidence about H,.

Typically, test statistic is small
in magnitude when the
hypothesis H, is true and
large when false.

Null Distribution of T

— We need to know the distribution of T under the
null hypothesis.



Hypothesis testing & inference

- Significance level a: u,

Acceptable false positive rate a.
= threshold u,

Threshold u, controls the false positive rate
a=p(T>u,[H,)

0

h

Null Distribution of T

 Conclusion about the hypothesis:
We reject the null hypothesis in favour t
of the alternative hypothesis if t > u,
« p-value:
A p-value summarises evidence against H,. p-valug
This is the chance of observing value more
extreme than t under the null hypothesis. TS T
p(T > t|Hy) 9




Contrast & effect of interest
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A contrast selects a specific
effect of interest

e a contrast c is a vector of length p.

e ¢c'p is a linear combination of
regression coefficients g.

c=[1000 ..]7

cTp=1XB+0XBy+0XPBs+0XpPy+ -

= P1
c=[01-10..]F

cCTB=0XpB +1XBy+—-1XBs+0XpLy~+

= B2 — B3

cTB~N(cTB,a%cT(XTX) Lc)
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t-Test, one dimensional contrast

c'=10000000

Br Bz B3 Ba Ps -

Question: box-car amplitude > 0 ?

Null hypothesis:

Test statistic:

pfi=c'p>07?

Ho: c'5=0

contrast of
estimated
parameters

estimate

T =
\I variance

T

¢’ 3

c' 3

) Jvar(c” ) ) JoicT (XTx)"c

~tN

—p
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t-Test in SPM

For a given contrast c:

-

beta_???? images

f=(XTX)"XTy

ResMS image
N-p

con_7??7?7? image

spmT_7?77?7 image

SPM{t}
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t-Test, simple example

Passive word listening vs. rest

c’™=[10000000]

.

Q: activation during
listening ?

SPMresults:

Height threshold T = 3.2057 {p<0.001}
voxel-level o mm

T ( ZE) P uncorrected

13.94 Inf 0.000 -63 -27 15
12.04 Inf 0.000 -48 -33 12
11.82 Inf 0.000 -66 -21 6
13.72 Inf 0.000 57 -21 12
12.29 Inf 0.000 63 -12 -3
9.89 7.83 0.000 57 -39 6
7.39 6.36 0.000 36 -30 -15
6.84 5.99 0.000 51 0 48
6.36 5.65 0.000 -63 -54 -3
6.19 5.53 0.000 -30 -33 -18
5.96 5.36 0.000 36 -27 9
5.84 5.27 0.000 -45 42 9
5.44 4.97 0.000 48 27 24
5.32 4.87 0.000 36 -27 4213



t-Test, summary

e T-test is a sighal-to-noise measure (ratio of
estimate to standard deviation of estimate).

e Alternative hypothesis:
Ho: ¢'8=0 vs Hc'B>0

e T-contrasts are simple combinations of the
betas

o T-statistic does not depend on the scaling
of the regressors or the scaling of the
contrast.

14



t-Test, scaling issue
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E = on the scaling of the regressors
S = neither of the contrast.
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e Contrast ¢’ does depend on
scaling.
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e Be careful of the interpretation
of the contrasts c7f themselves
(e.g., for a second level
analysis):

Subject 5

sum # average
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F-test, extra-sum-of-squares principles

Model comparison:
Null Hypothesis H,: True model is X, (reduced model) |

X Test statistic: ratio of
explained variability and
unexplained variability (error)

7 o F5S0 — RSS
— RSS — RSSO RSS

ngUH Z Ereduced

ESS
F R_SS -~ E’LVZ

v, = rank(X) — rank(X)
Full model ? or Reduced model? v, = N — rank(X) 16




F-test, multidimensional contrast

Tests multiple linear hypotheses:
H,: True model is X, ‘ ] Ho: By =fs=...= =0 ‘ testH,: c'f=07? |

X X X 000i100000
0 1 (B 0 000:010000
cT = 000001000
000:000100
000i000010
000i000001

o
- SP M{ F6,322}
ﬁ' .

Full model? Reduced model?
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F-contrast in SPM

ResMS image
beta_??7?? images AT A
B=(XTX)1XT 61 ="
= y N_p

ess_7?77?? images

(RSS, - RSS)

spmF_??7?7? images

SPM{F}




F-test, example

Movement related effects
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F-test summary

F-tests can be viewed as testing for the additional
variance explained by a larger model w.r.t. a
simpler (nested) model — model comparison.

F-tests a weighted sum of squares of one or
several combinations of the coefficients p.

In practice, no need to explicitly separate X into
[X; X,] thanks to multidimensional contrasts.

Hypotheses:
Null Hypothesis H,: g, =, =£,=0

Alternativ e Hypothesis H , : at least one g, #0

o » O O

IOOOOI

| |
o O O -
o O +» O

In 1D contrast with an F-test, testing f; — B, is the
same as testing B, — By.
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A bad model

True signal (---) and
observed signal

Model (green, peak at

6sec) and TRUE signal
(blue, peak at 3sec)

= Test for the green

Fitting :
bl = 0.2, mean = .11

Noise
(still contains some signal)

regressor not significant

22



A bad model
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b,=0.22
b,=0.11

P(b1>0)=0.1
(t-test b1>0)

P(b1=0)=0.2
(F-test b1+0)

+
- [T |

»Residual Variance =

0.3
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A better model...

TlaN ; True signal + observed
o\ o ~h ’ signal

0 0 20 20 a0 50 B0

: . . . . . Model (green and red)

and true signal (blue ---)
Red regressor : temporal
derivative of the green
regressor

Global fit (blue)
,» and partial fit (green & red)
T s 5w Adjusted and fitted signal
”[\»/\/V\/\/\/\/\/\/\/\/\/V\\/\f/ » Noise (a smaller variance)
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A better model

b,=0.22
b,= 2.15
b,=0.11

Residual Var= 0.2

P(bl1>0)=0.07
(t test b1>0)

P([b1b2]=]00]) =
0.000001

<[] W |
1

X B (F test [bl b2]£[0 0])

R UL

= Test of the green regressor almost significant
= Test F very significant
— Test of the red regressor very significant 55



Summary

The residuals should be looked at ...(non
random structure ?)

We rather test flexible models if there is
little a priori information, and precise ones
with a lot a priori information

In general, use the F-tests to look for
an overall effect, then look at the betas
or the adjusted signal to characterise
the origin of the signal

Interpreting the test on a single
parameter (one function) can be very
confusing: cf. the delay or magnitude
Situation



Correlation between regressors

True signal

i
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Model (green and red)

Fitting (blue : global fit)

Noise
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Correlation between regressors

b,=0.79
b,=0.85
b3 = 0.06

Residual var. = 0.2

P(bl1>0)=0.08
(t test b1>0)

P(b2>0)=0.07
(t test b2>0)

P([bl1b2]=0)=0.002
(F test [b1b2]#0)

~b
N 2

st UL URL 0]
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Decorrelated regressors

I I
M = L} = [gh}
T T T

W—’
ok -

1 1 1 1 1
1] 10 20 30 40 i 5]

true signal

Model : red regressor
orthogonalised with respect to
the green one = remove every

thing that can correlate with
the green regressor

'Fit

1
10 20 30 40 a0 511

» Noise
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Decorrelated regressors

b=147 <0.79
b,=0.85 «0.85
b3=0.06 <«0.06

Residual var. = 0.2

P(bl>0)=0.0003
(t test b1>0)

+
Lo M HERE T W

P(b2>0)=0.07
(t test b2>0)

P([b1b2]=0)=0.002
(F test [bl b2] # 0)

< I 0 |
I
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Orthogonal regressors

Variability described by X;

Testing for X,

Variability described by X,

Testing for X,
Variability in Y

31



Orthogonal regressors

Variability described by X;

Shared variance

©x Aq paquosap Ajljiqelien

Variability in Y

32



Orthogonal regressors

Testing for

Variability described by X;

°x Aq paquosap Ajljiqelien

Variability in Y
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Orthogonal regressors

Testing for X,

Variability described by X;

°x Aq paquosap Ajljiqelien

Variability in Y
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Orthogonal regressors

Variability described by X,

x Aq paquasap Ajljigerien

Variability in Y
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Orthogonal regressors

Testing for X,

Variability described by X;

¢x AQ paquosap Ajijiqelen

Variability in Y
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Orthogonal regressors

Testing for X,

Variability described by X;

¢x AQ paquosap Ajijiqelen

Variability in Y
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Orthogonal regressors

Testing for X; and/or X,

S
Fy >
o 3,
S5 =)
% g
S o
£ Q
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Variability in Y
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Design orthogonality

« For each pair of columns of
the design matrix, the
orthogonality matrix
depicts the magnitude of
the cosine of the angle
between them, with the
range 0 to 1 mapped from
white to black.

‘IIII

desicgn matriz

« If both vectors have zero
mean then the cosine of
the angle between the
vectors is the same as the
correlation between the
two variates.

resign orthogonaliy

Heasure : abz. walue of cozine of anale beteen colurmnz of design matnx:
Scale - black - colinear I:cns:+11'-9|l]
uuhite: - arhogonal [zoz=0]
gray - not orthogonal or colinear



Correlated regressors

o We implicitly test for an additional effect only. When testing for
the first regressor, we are effectively removing the part of the
signal that can be accounted for by the second regressor —
implicit orthogonalisation.

-
e Orthogonalisation = decorrellation. Parameters and test on the
non modified regressor change.
Rarely solves the problem as it requires assumptions about
which regressor to uniquely attribute the common variance.
— change regressors (i.e. design) instead, e.g. factorial designs.
— use F-tests to assess overall significance.

e Original regressors may not matter: it's the contrast you are
testing which should be as decorrelated as possible from the

rest of the design matrix 40



Design orthogonality

Black = completely correlated White = completely orthogonal
1 2 1 2
Coir(l,l) er(l,Z) - B
q 2%
2 L 2
L 2 | "N L 2

Beware : when there is more than 2 regressors
(C1,C2,C3...), you may think that there is little
correlation (light grey) between them, but C1 +
C2 + C3 may be correlated with C4 + C5



Rank-deficient model

101 Mean = C1+C2

O 1 1 A >
Y=Xb+e X=101

011 C2

/1N

Cond 1 Cond 2 Mean > C1

Parameters are not unigue in general !
Some contrasts have no meaning: NON ESTIMABLE

Example here :

« ¢’=[100]is not estimable
( = no specific information in the first regressor);

« ¢’=[1-10]is estimable. 5



Summary

o We are implicitly testing additional effect only, so we may
miss the signal if there is some correlation in the model
using t tests

e Orthogonalisation is not generally needed - parameters and
test on the changed regressor don’t change

e It is always simpler (when possible !) to have orthogonal
(uncorrelated) regressors

e In case of correlation, use F-tests to see the overall
significance. There is generally no way to decide where the
« common » part shared by two regressors should be
attributed to

e In case of correlation and you need to orthogonolise a part
of the design matrix, there is no need to re-fit a new model
: the contrast only should change.
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Way to proceed

Prepare your questions.
ALL the questions !

Find a model which
eallows contrasts that translates
these questions.
etakes into account ALL the
effects (interaction, sessions,etc)

Devise task & stimulus presentation.

Acquire the data & analyse.

Not the other way round!!!
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