NeuroImaging Data Processing

aka. Statistical Parametric Mapping short course

Course 3:

General Linear Model, p.1

Content

Introduction

General Linear Model

Parameter estimation

Improved model

Conclusion

Content

Introduction

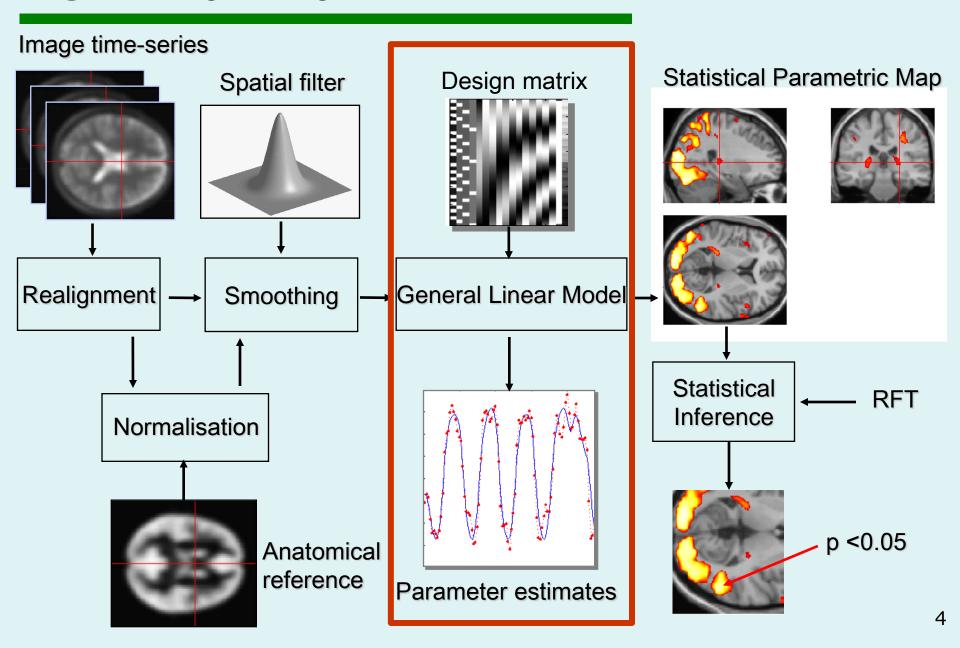
General Linear Model

Parameter estimation

Improved model

Conclusion

SPM work flow



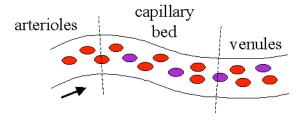
fMRI & BOLD signal

Basal state

arterioles bed venules

- normal flow
- basal level [Hbr]
- basal CBV
- normal MRI signal

Activated state

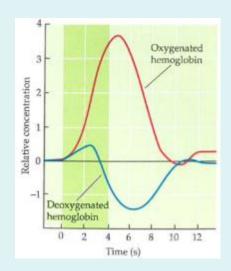


- increased flow

 $= HbO_2$

= Hbr

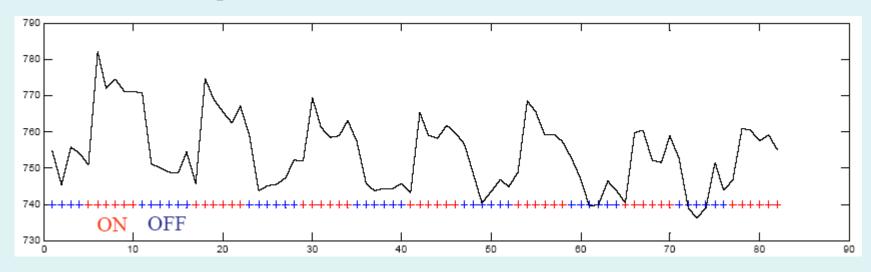
- decreased [Hbr] (lower field gradients around vessels)
- increased CBV
- increased MRI signal (from lower field gradients)



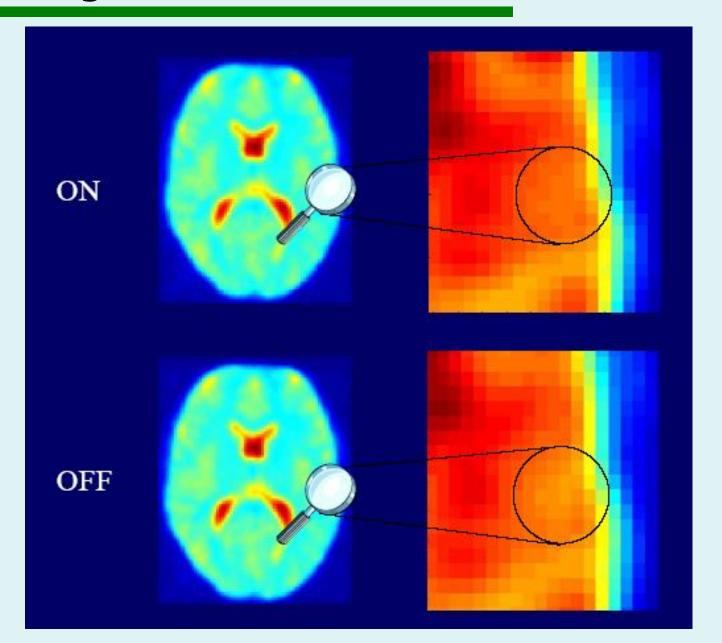
A simple fMRI experiment

Stimuli: passive word listening versus rest

BOLD response in the primary auditory cortex

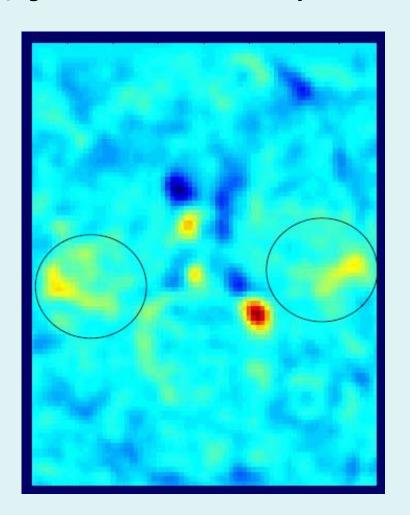


Looking at 2 scans



Looking at 2 scans

ON-OFF, just one scan per condition



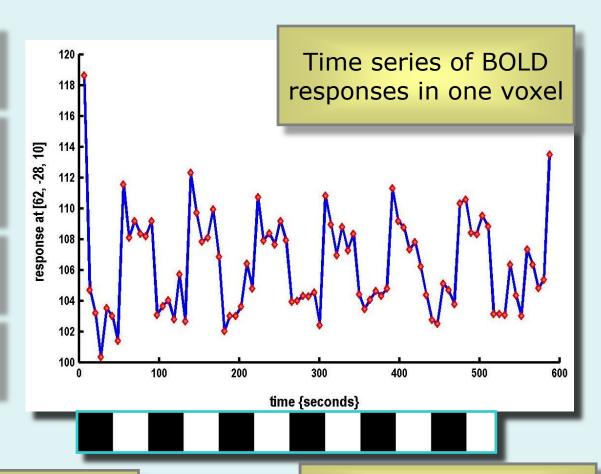
Simple fMRI example dataset

One session, one subject

Passive word listening versus rest

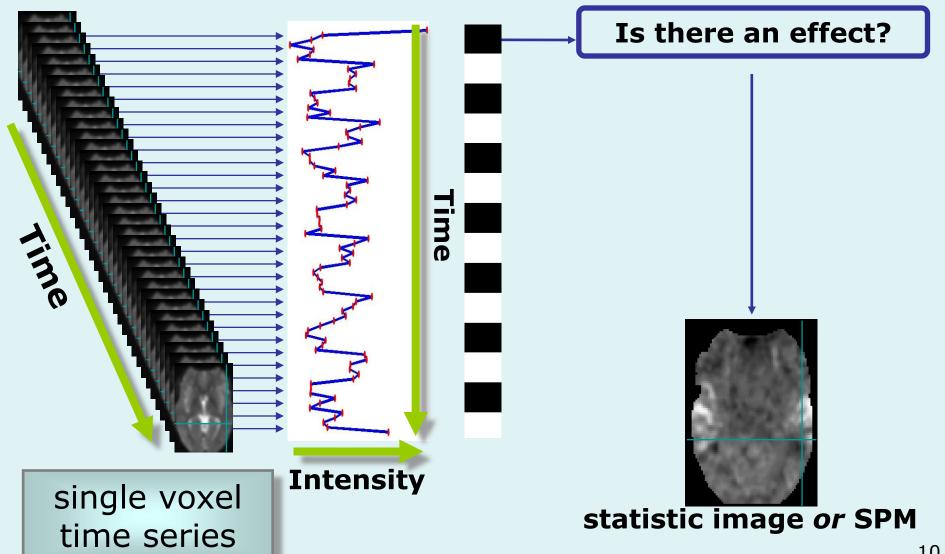
7 cycles of rest and listening

Each epoch 6 scans with 7 sec TR

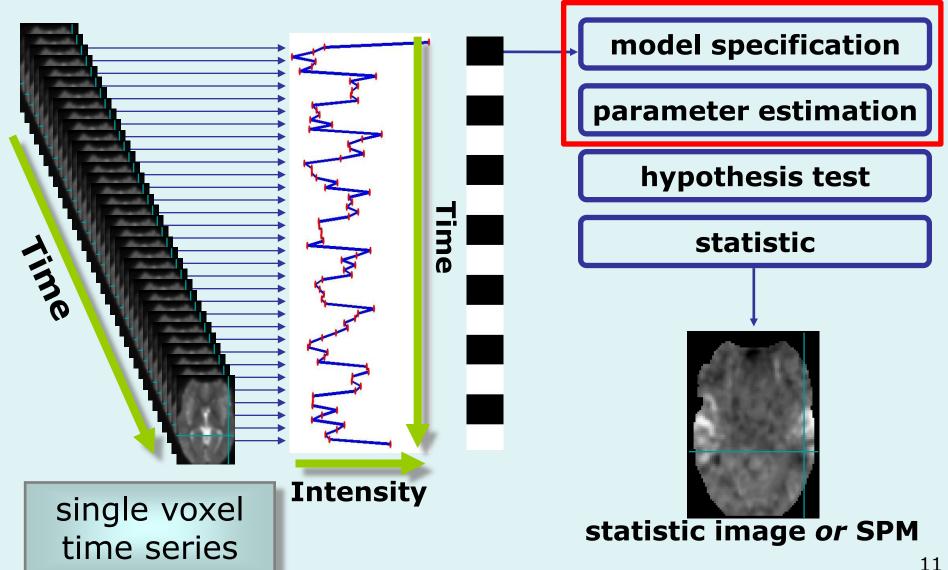


Question: Is there a change in the BOLD response between listening and rest? Stimulus function

Voxel by voxel statistics



Voxel by voxel statistics



Content

Introduction

General Linear Model

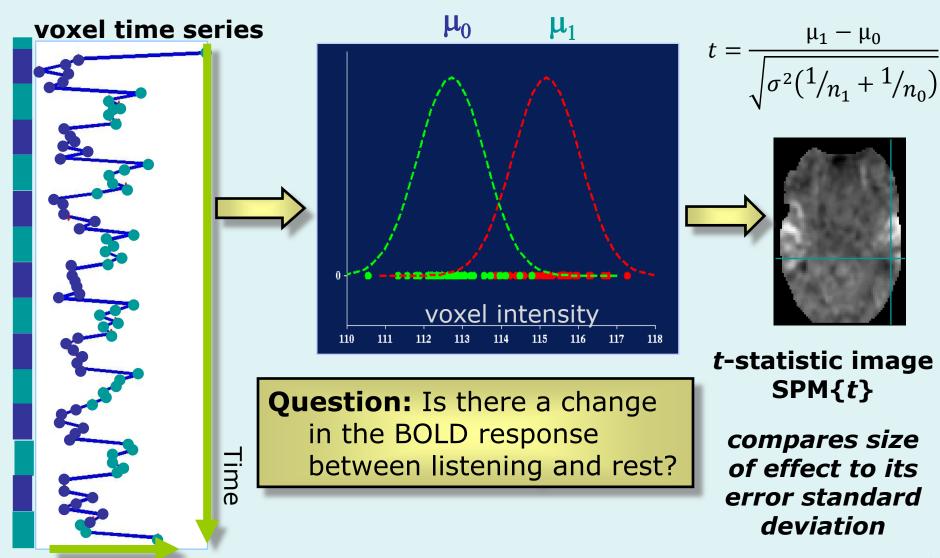
Parameter estimation

Improved model

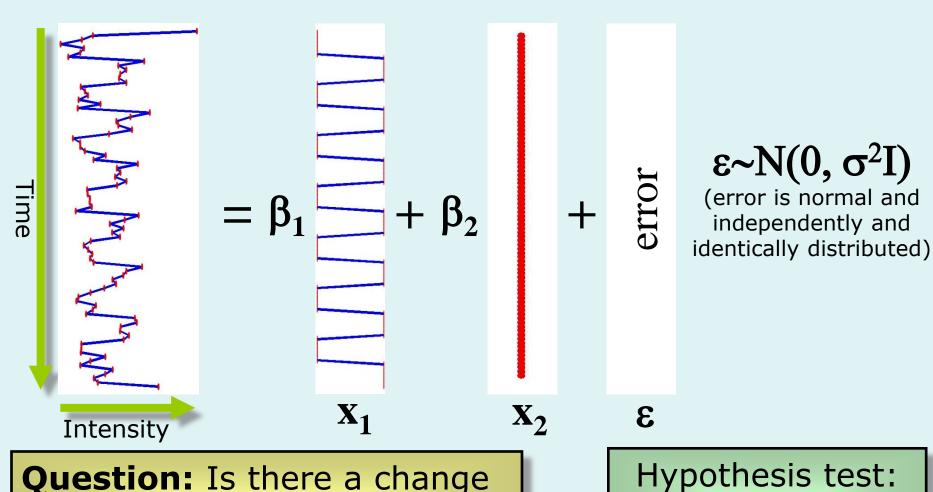
Conclusion

Single voxel, two-sample t-test

Intensity



Single voxel, regression model

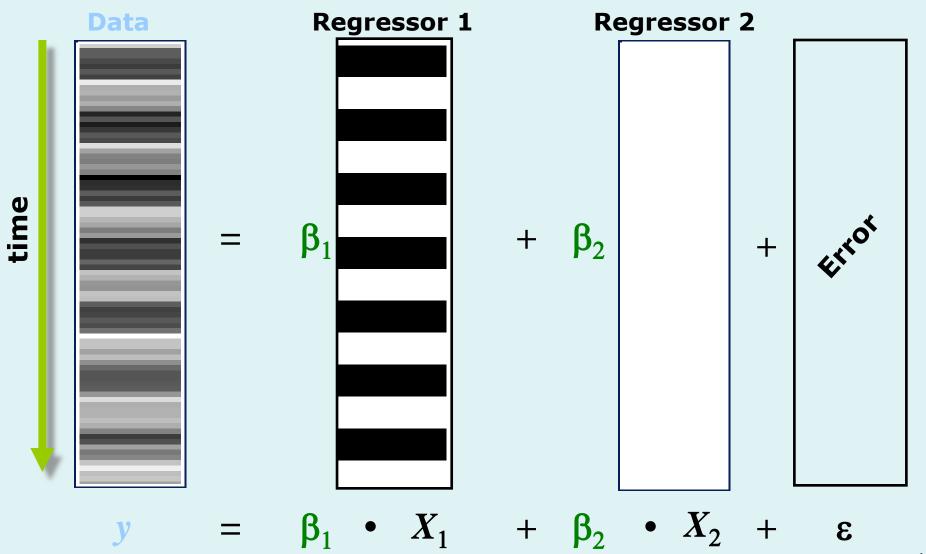


Question: Is there a change in the BOLD response between listening and rest?

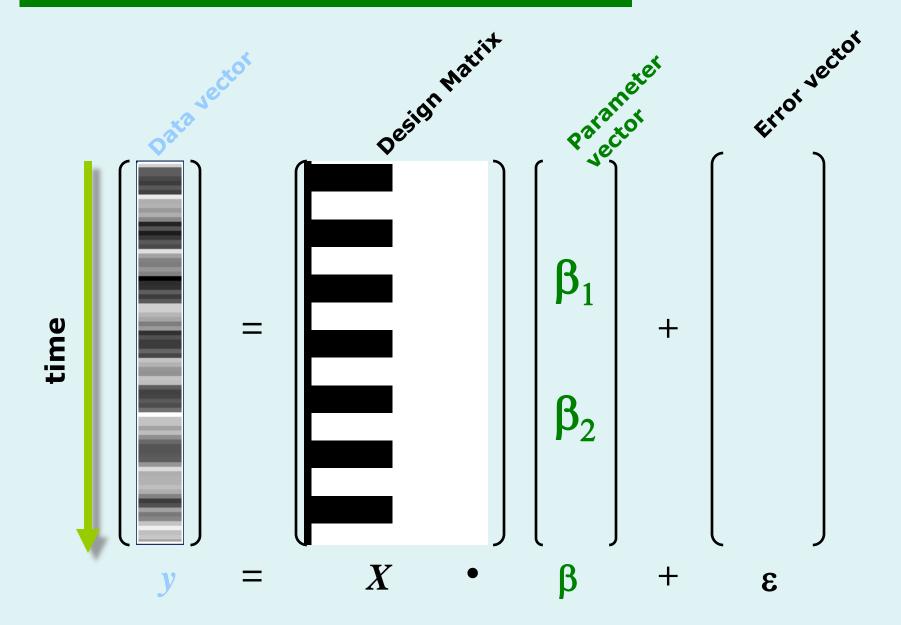
$$\beta_1 = 0$$
?

(using t-statistic)

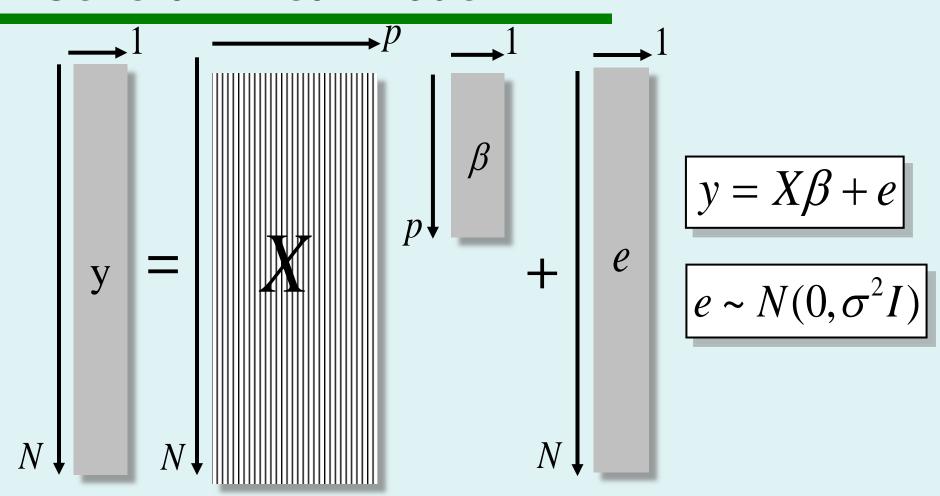
Model as basis functions



Design matrix



General Linear Model



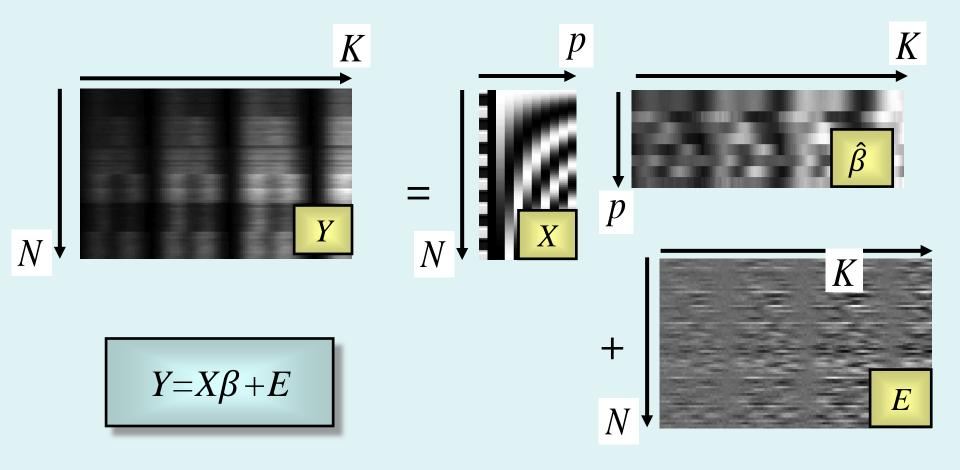
N: number of scans

p: number of regressors

Model is specified by

- 1. Design matrix ${f X}$
- Assumptions about ε

GLM & Mass univariate approach



The design matrix embodies all available knowledge about experimentally controlled factors and potential confounds.

Classical statistics

- parametric
 - one sample *t*-test
 - two sample *t*-test
 - paired *t*-test
 - Anova
 - AnCova
 - correlation
 - linear regression
 - multiple regression
 - *F*-tests
 - etc...

all cases of the

General Linear Model

assume normality
to account for serial correlations:
Generalised Linear Model

non-parametric?

→ SnPM

Content

Introduction

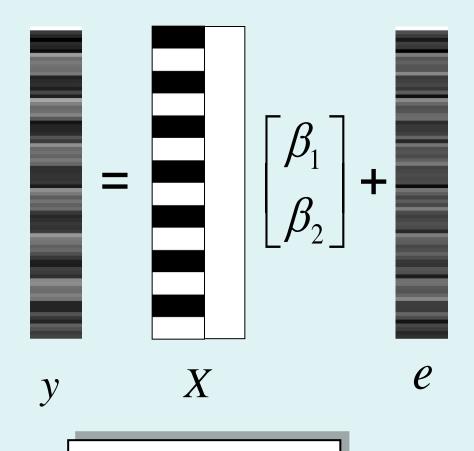
General Linear Model

Parameter estimation

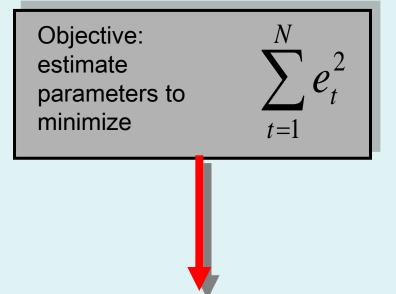
Improved model

Conclusion

Parameter estimation



$$y = X\beta + e$$



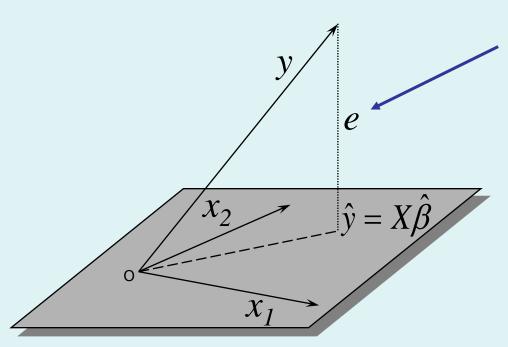
Ordinary least squares estimation (OLS) (assuming i.i.d. error):

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

$$\hat{\beta} \sim N(\beta, \sigma^2(X^TX)^{-1})$$

Geometric perspective on the GLM

Ordinary Least Squares (OLS)



Design space defined by *X*

Smallest errors (shortest error vector) when e is orthogonal to X

$$X^{T}e = 0$$

$$X^{T}(y - X\hat{\beta}) = 0$$

$$X^{T}y = X^{T}X\hat{\beta}$$

$$\hat{\beta} = (X^{T}X)^{-1}X^{T}y$$

N data points → N dimension space !

Content

Introduction

General Linear Model

Parameter estimation

Improved model

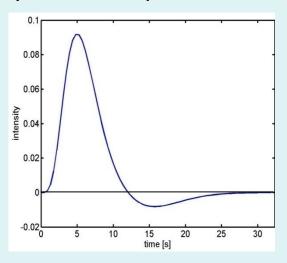
Conclusion

Problems with fMRI time series

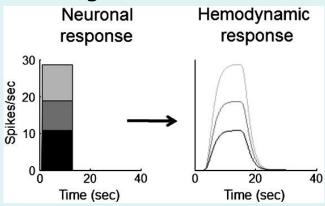
- 1. The **BOLD response** has a delayed and dispersed shape.
- 2. The BOLD signal includes substantial amounts of *low-frequency noise* (e.g. due to scanner drift).
- 3. Due to breathing, heartbeat & unmodeled neuronal activity, the *errors* are serially correlated. This violates the assumptions of the noise model in the GLM.

Problem 1: BOLD response

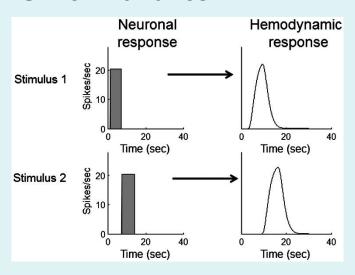
Hemodynamic response function (HRF):



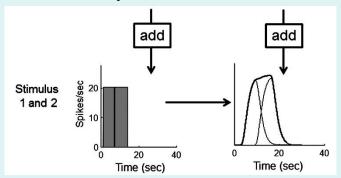
Scaling



Shift invariance

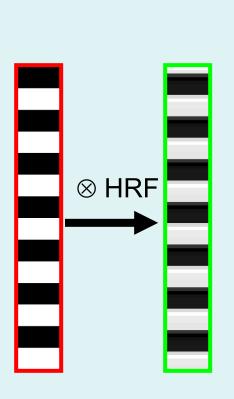


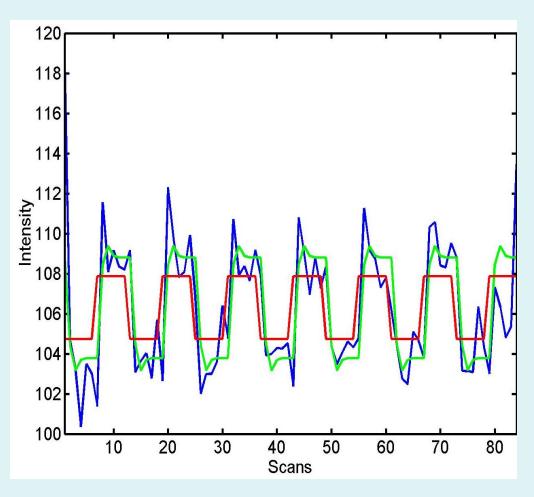
Additivity



Solution for the BOLD response

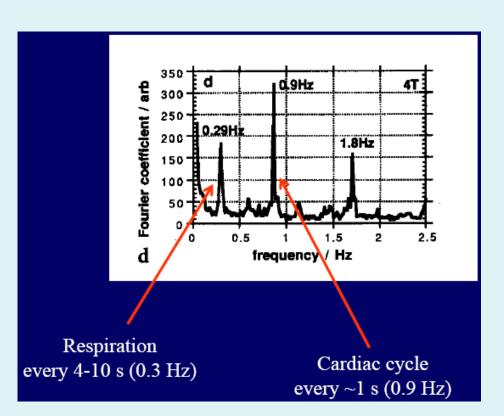
Convolve stimulus function with a canonical hemodynamic response function (HRF):

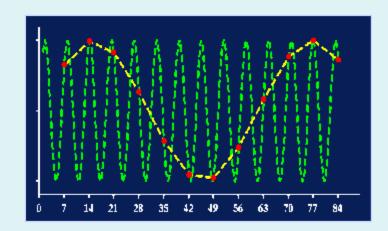


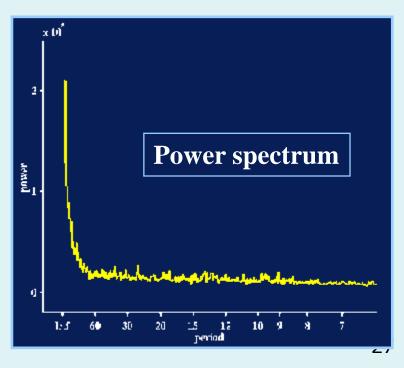


Problem 2: Low frequency noise

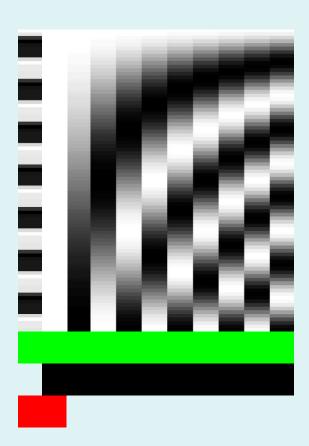
- Physiological noise + scanner drift
- Aliased high frequency effects
- ⇒ Power in the low frequencies



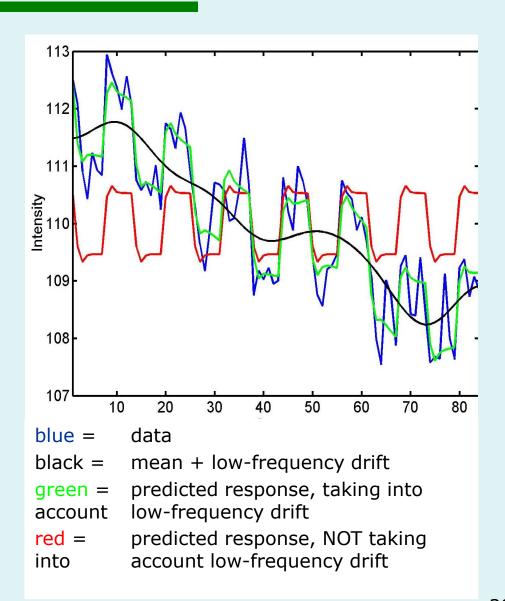




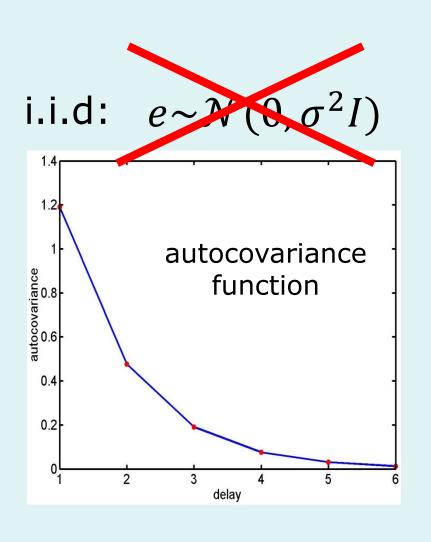
Solution with high pass filtering

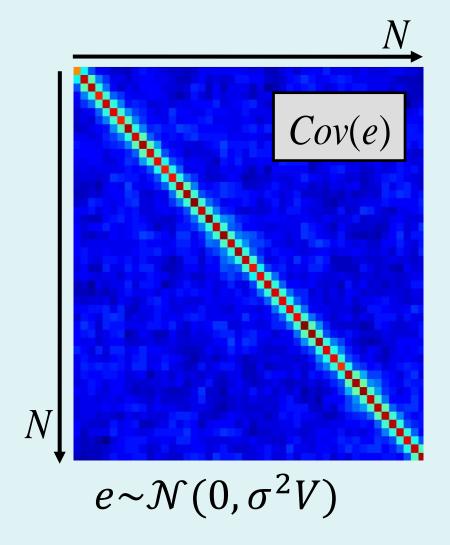


discrete cosine transform (DCT) set



Problem 3: Serial correlations



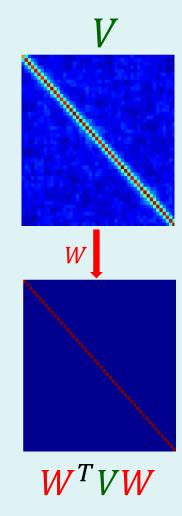


Solution for serial correlations

$$y = X\beta + e$$
 $e \sim \mathcal{N}(0, \sigma^2 V)$
Let $W^T W = V^{-1}$
 $Wy = WX\beta + We$ $We \sim \mathcal{N}(0, \sigma^2 W^T V W)$
 y_s X_s e_s

Solution: Whitening the data

BUT this requires an estimation of *V*



Equivalent to the Weighted Least Square estimator

Multiple covariance components

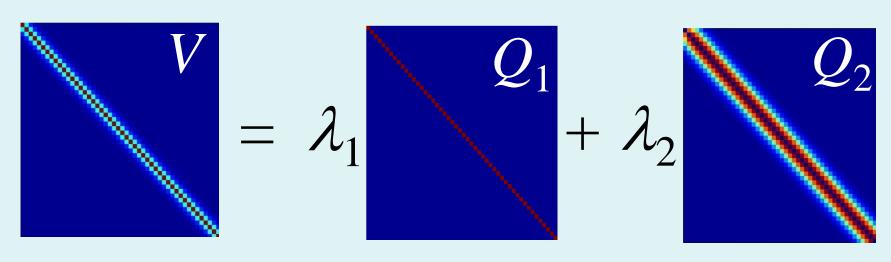
enhanced noise model at voxel i

$$e_i \sim N(0, C_i)$$

$$C_i = \sigma_i^2 V$$

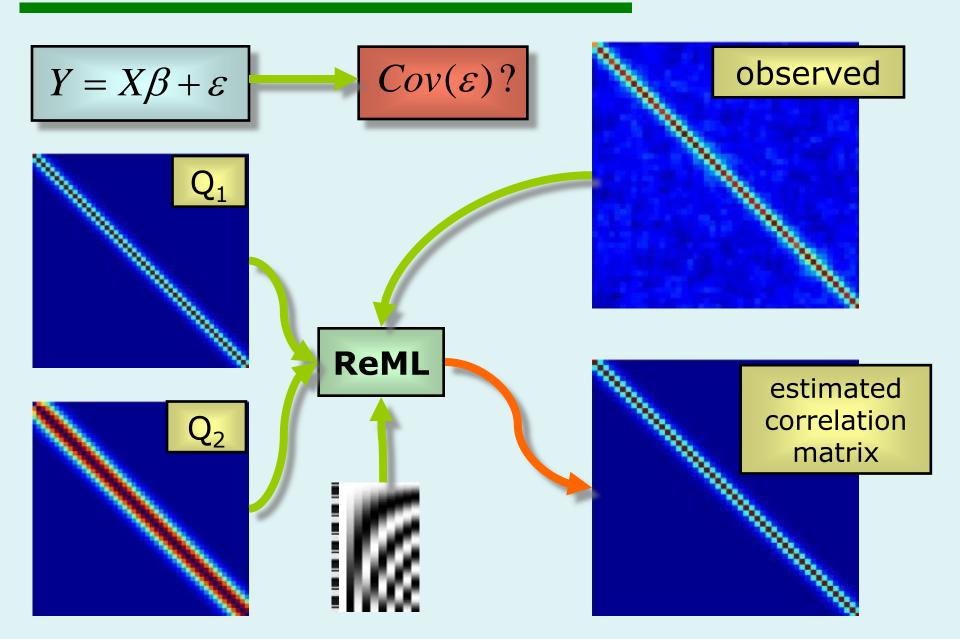
$$V = \sum \lambda_j Q_j$$

error covariance components Q and hyperparameters λ



Estimation of hyperparameters λ with ReML (Restricted Maximum Likelihood).

Restricted Maximum Likelihood



Estimation in SPM

$$\hat{C}_{\varepsilon} = C\hat{o}v(\varepsilon) = \text{ReML}(\sum_{voxel\ j} y_j y_j^T, X, Q)$$

$$\text{ReML (pooled estimate)}$$

$$\hat{\theta}_{j,OLS} = X^+ y_j$$

$$\hat{\theta}_{j,ML} = (X^T V^{-1} X)^{-1} X^T V^{-1} y_j$$
 Ordinary least-squares
$$\text{Maximum Likelihood}$$

2 passes (first pass for selection of voxels)

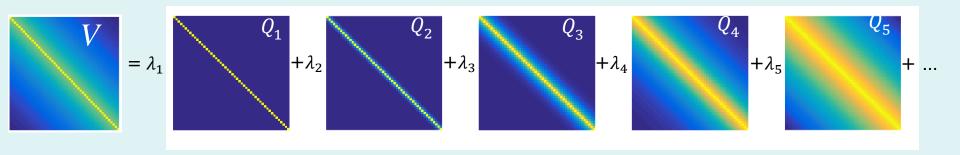
more accurate estimate of V

Assume, at voxel
$$j$$
: $C_{\varepsilon,j} = \sigma_j V$

$$t = \frac{c^{T} \theta}{\text{SE}(c^{T} \theta)} \qquad \text{SE}(c^{T} \theta) = \sqrt{\hat{\sigma}^{2} c^{T} (V^{-1/2} X)^{-} (V^{-1/2} X)^{-T} c}$$

Limitations

The AR(1)+white noise model may not be enough for short TR (<1.5 s)



The flexibility of the ReML enables the use of any number of components of any shape

Content

Introduction

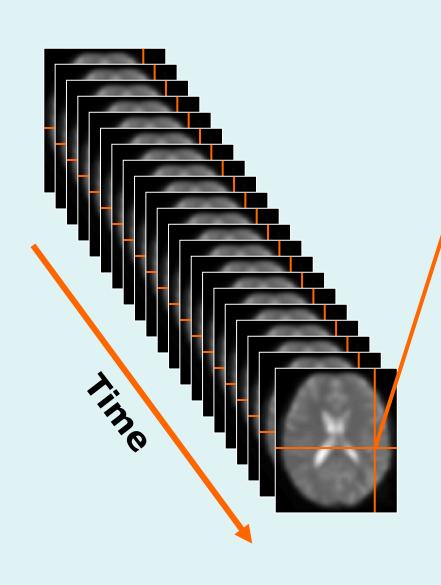
General Linear Model

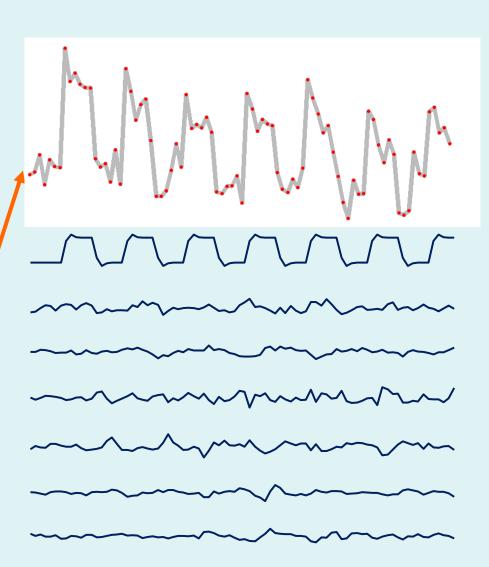
Parameter estimation

Improved model

Conclusion

A mass univariate approach



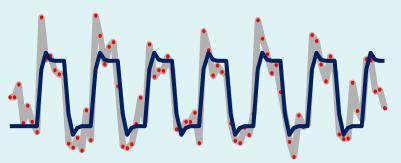


Summary

Mass univariate approach:

- Fit GLMs with
 - design matrix, X,
 - to data at different points in space
 - to estimate local effect sizes, β
- GLM, a very general approach that accommodates
 - Hemodynamic Response Function
 - Nuisance effects, e.g. high pass filtering
 - Error term covariance, e.g. temporal autocorrelation

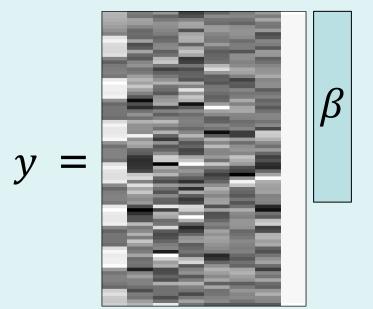
Summary



noise assumptions: $\varepsilon \sim N(0, \sigma^2 V)$

Pre-whitening: $X_S = WX$ $y_S = Wy$ $\varepsilon_S = W\varepsilon$

$$\hat{\beta} = (X_S^T X_S)^{-1} X_S^T y_S$$



 $\hat{\beta}_{2-7} = \{0.6871, 1.9598, 1.3902, 166.1007, 76.4770, -64.8189\}$

$$\hat{\beta}_8 = 131.0040$$

 $+\varepsilon$

$$\hat{\epsilon_s} = \mathcal{M}_{\mathcal{M}}$$

$$\hat{\beta} \sim N(\beta, \sigma^2(X_S^T X_S)^{-1})$$

$$\hat{\sigma}^2 = \frac{\widehat{\varepsilon_s}^T \widehat{\varepsilon_s}}{N-p}$$

Why modelling?

Why?

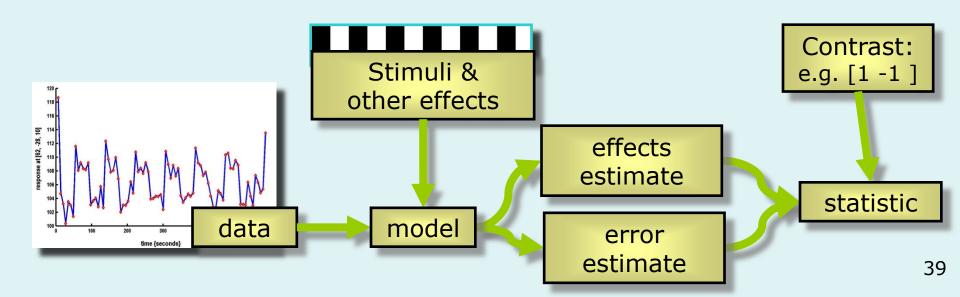
Make inferences about effects of interest

How?

- 1. Decompose data into effects and error
- Form statistic using estimates of effects and error

Model?

Use any available knowledge



References

- Statistical parametric maps in functional imaging: a general linear approach, K.J. Friston et al, Human Brain Mapping, 1995.
- Analysis of fMRI time-series revisited again, K.J. Worsley and K.J. Friston, NeuroImage, 1995.
- The general linear model and fMRI: Does love last forever?, J.-B. Poline and M. Brett, NeuroImage, 2012.
- Linear systems analysis of the fMRI signal, G.M. Boynton et al, NeuroImage, 2012.