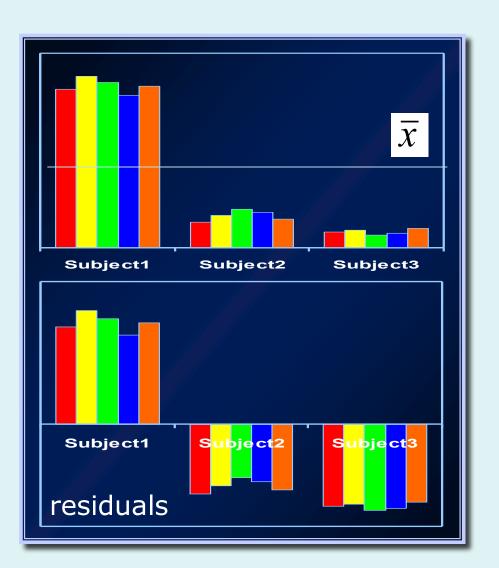
NeuroImaging Data Processing

aka. Statistical Parametric Mapping short course

Course 6:

Random Effect Analysis

Random effects & variance components



Fixed effects

- Are you confident that a new observation from any of subjects 1-3 will be around their mean?
- Yes! using within-subjects variance
- infer for these subjects case study
- Random effects
 - Are you confident that a new observation from a new subject will be around the mean of first 3?
 - No! using between-subjects variance
 - infer for any subject population

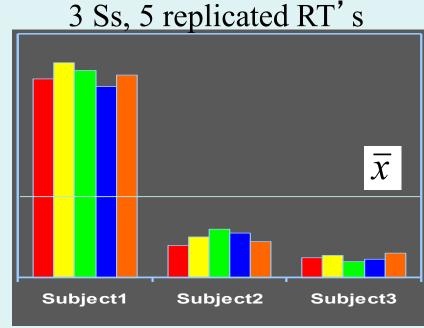
Random Effects Illustration

Standard linear model

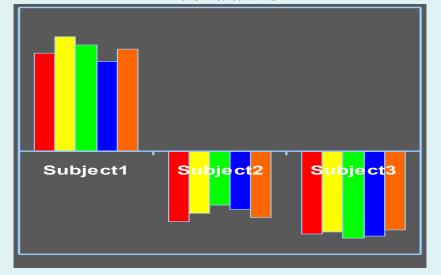
$$Y = X\beta + \varepsilon$$

assumes only one source of *iid* random variation

- Consider this RT data
- Here, two sources
 - Within subject var.
 - Between subject var.
 - Causes dependence in ε



Residuals

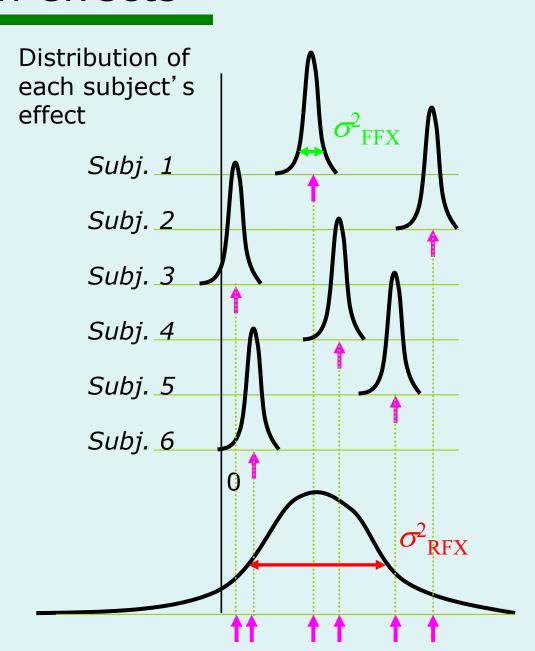


Fixed vs. Random effects

- Fixed Effects
 Intra-subject
 variation suggests
 all these subjects
- Random Effects
 Intersubject
 variation suggests

population not very different from zero

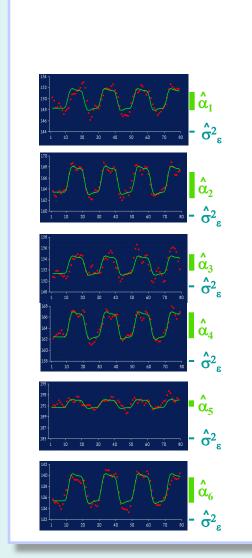
different from zero

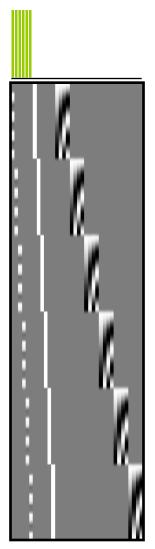


Fixed vs. Random

- Fixed is not "wrong," just usually is not of interest
- Fixed Effects Inference
 - "I can see this effect in this cohort"
- Random Effects Inference
 - "If I were to sample a new cohort from the population I would get the same result"

Multi-subject analysis...?

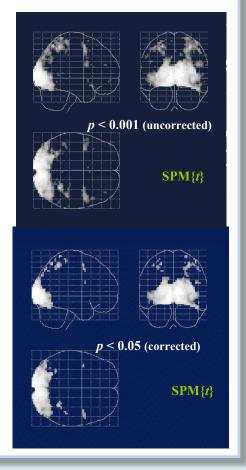




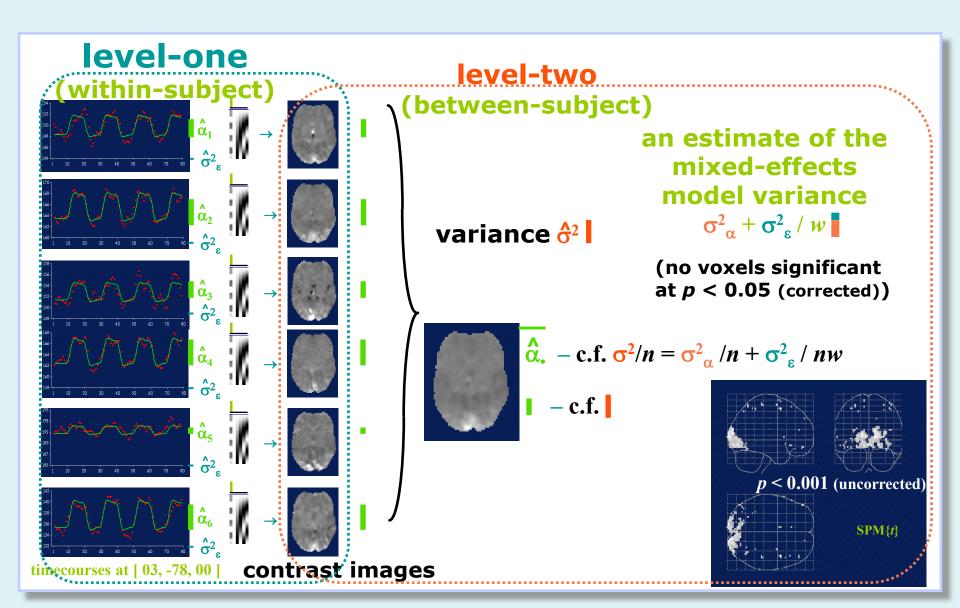
estimated mean activation image

$$\frac{\hat{\alpha}}{\cdot}$$
 - c.f. σ^2_{ϵ} / nw

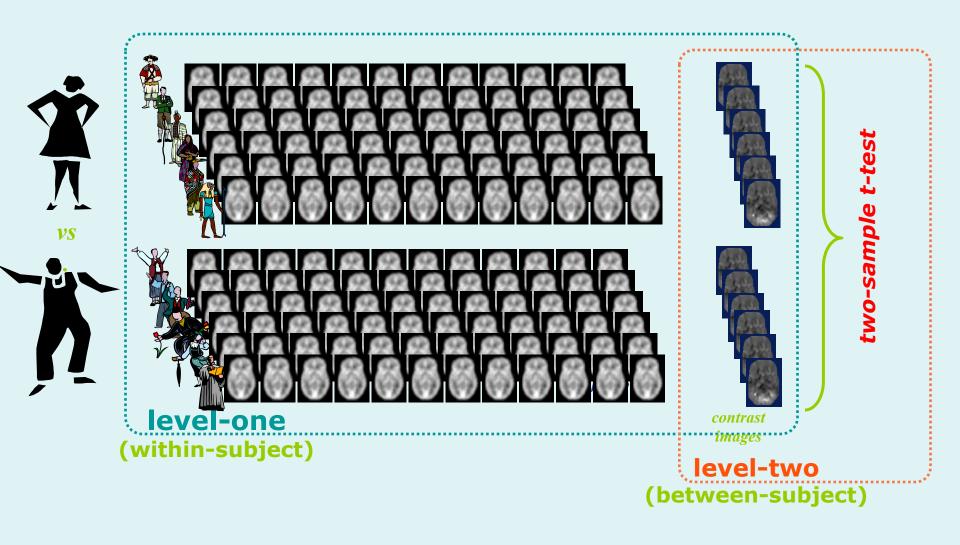
$$- \text{c.f.} -$$



Two-stage analysis of random effect...



Two stage random effects, group comparison



Summary

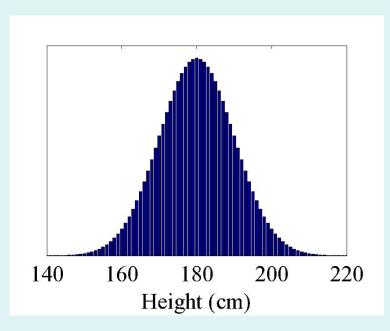
- Analyse subjects individually
 - Build within-subject models
 - Calculate contrast(s) of interest

- Use contrast images in a 2nd level (Random Effect, RFX) analysis
 - Build between-subject model
 - Calculates SPMs of interest

Draw conclusions for the population

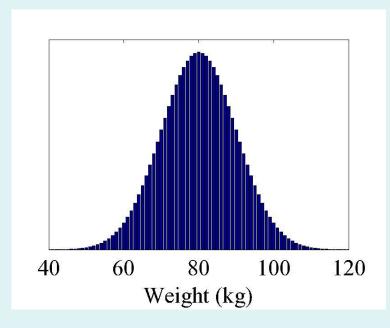
Variance-Covariance matrix

Height of Swedish men



$$\mu = 180$$
cm, $\sigma = 14$ cm ($\sigma^2 = 200$)

Weight of Swedish men



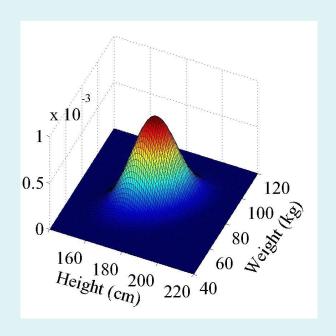
$$\mu$$
=80kg, σ =14kg (σ ²=200)

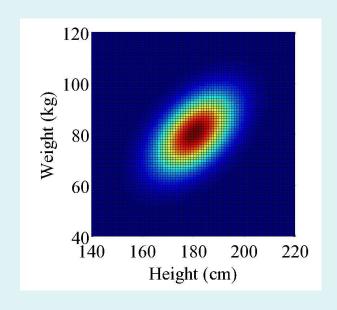
Each completely characterised by μ (mean) and σ^2 (variance),

i.e. we can calculate $p(l|\mu,\sigma^2)$ for any l

Variance-Covariance matrix

 Now let us view height and weight as a 2dimensional stochastic variable (p(I,w)).





$$\boldsymbol{\mu} = \begin{bmatrix} 180 \\ 80 \end{bmatrix} \qquad \boldsymbol{\Sigma} = \begin{bmatrix} 200 & 100 \\ 100 & 200 \end{bmatrix}$$

$$p(l,w|\boldsymbol{\mu},\boldsymbol{\Sigma})$$

Sphericity

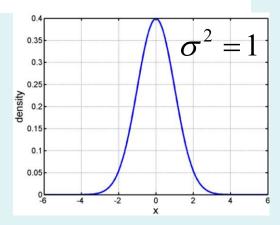
$$y = X\beta + \varepsilon$$

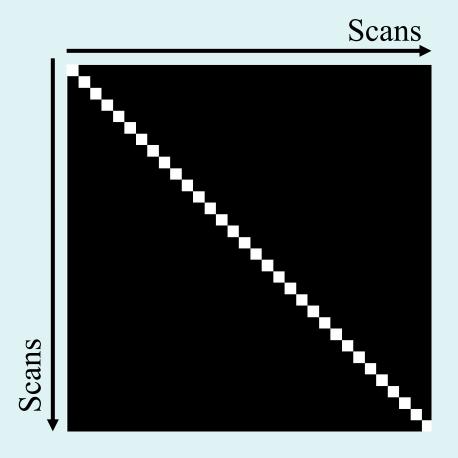
$$C_{\varepsilon} = Cov(\varepsilon) = E(\varepsilon \varepsilon^{T})$$

,sphericity' means:

$$Cov(\varepsilon) = \sigma^2 I$$

i.e. $Var(\varepsilon_i) = \sigma^2$



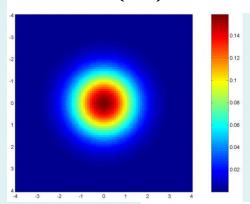


Non-sphericity

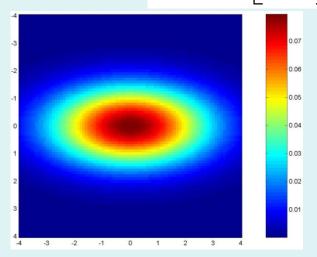
$$Cov(\varepsilon) = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$$

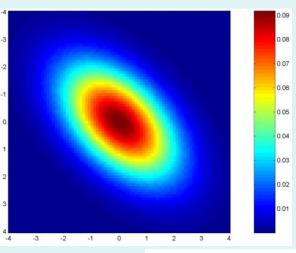
non-sphericity means that the error covariance doesn't look like this:

$$Cov(\varepsilon) = \sigma^2 I$$



$$Cov(\varepsilon) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$





$$Cov(\varepsilon) = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Height

Weight

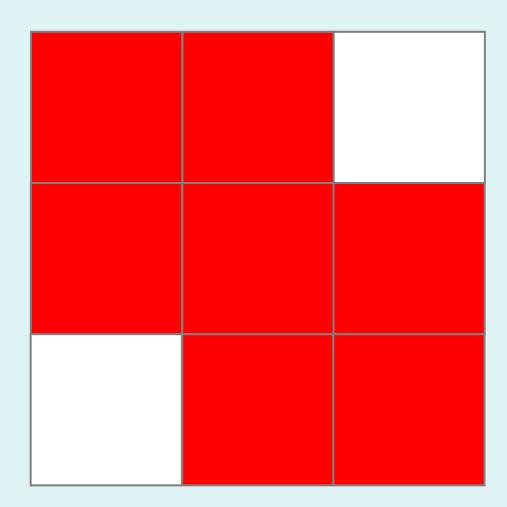
hours watching telly per day

I	I

Height

Weight

hours watching telly per day



Height

Weight

hours watching telly per day

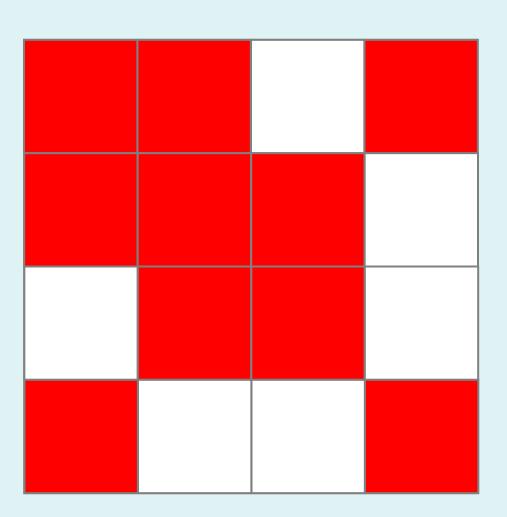
Shoe size

Height

Weight

hours watching telly per day

Shoe size



Example I

Stimuli:

Auditory Presentation (SOA = 4 secs) of (i) words and (ii) words spoken backwards

e.g.
"Book"
and
"Koob"

Subjects:

- (i) 12 control subjects
- (ii) 11 blind subjects

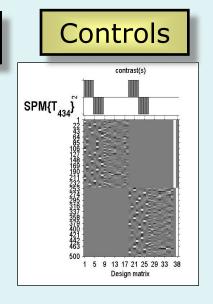
Scanning:

fMRI, 250 scans per subject, block design

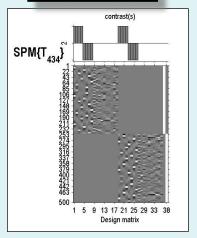
U. Noppeney et al.

Population differences

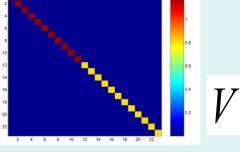
1st level:

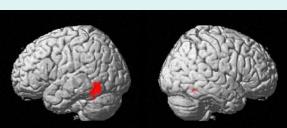


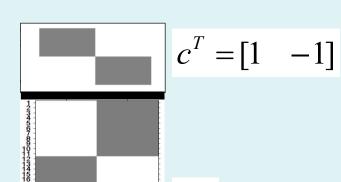
Blinds



2nd level:







Example II

Stimuli:

Auditory Presentation (SOA = 4 secs) of words

Motion	Sound	Visual	Action
"jump"	"click"	"pink"	"turn"

Subjects:

(i) 12 control subjects

Scanning:

fMRI, 250 scans per subject, block design

Question:

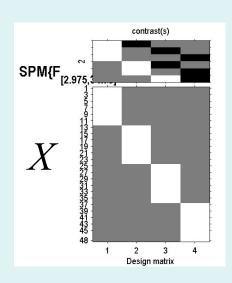
What regions are affected by the semantic content of the words?

U. Noppeney et al.

SPM Notation: iid case

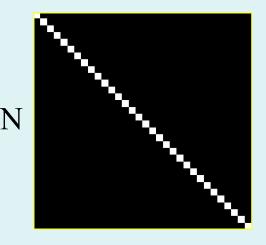
$$y = X \theta + \varepsilon_{N \times 1 N \times p p \times 1 N \times 1}$$

- 12 subjects,4 conditions
 - Use F-test to find differences btw conditions
- Standard Assumptions
 - Identical distribution
 - Independence
 - "Sphericity"... but here not realistic!



 $Cor(\varepsilon) = \lambda I$

Error covariance N



Multiple Variance Components

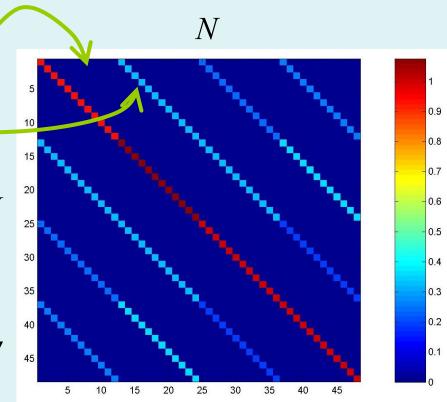
$$y = X \theta + \varepsilon$$
 $N \times 1 N \times p P \times 1 N \times 1$

- 12 subjects, 4 conditions
- Measurements btw subjects uncorrelated
- Measurements w/in subjects correlated

Errors can now have N different variances and there can be correlations Allows for 'nonsphericity'

$$Cor(\varepsilon) = \sum_{k} \lambda_k Q_k$$

Error covariance



Repeated measures Anova

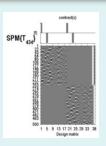
1st level:

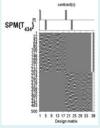
Motion

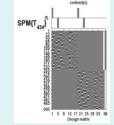
Sound

Visual

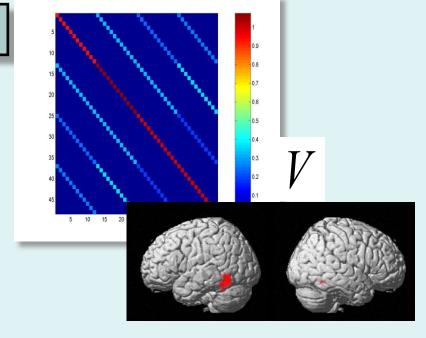
Action

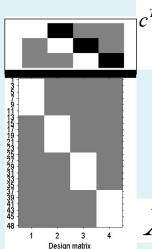


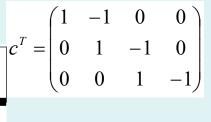




2nd level:







A little demo...