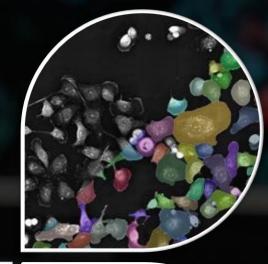
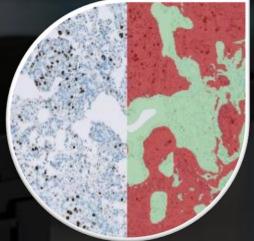
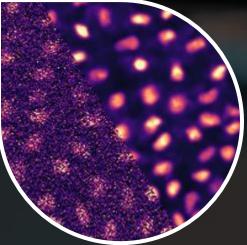


AI + Microscopy: A Powerful Duo for Biologists







Alexandre Hego GIGA Cell Imaging – Uliege CC BY-NC-SA 4.0

Cell Imaging platform

Sandra Ormenese

Flow Cytometry and Cell Imaging Manager

Gaëtan Lefevre

Cell Imaging & Sample preparation Expert

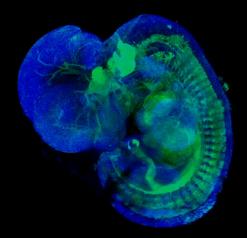
Alexandre Hego Cell Imaging & Image Analysis Expert

15 microscopes:

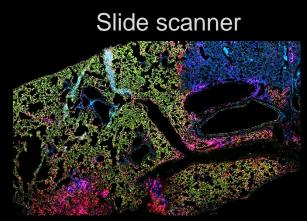
Widefield, confocal, high resolution, lightsheet, multiphoton, intravital, live cell automated microscopes, slide scanner, laser microdissection....

Examples :

Lightsheet

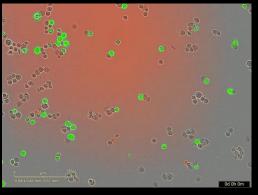


Mouse embryo E11.5 sox10 GFP Carla Gomes Da Silva GIGA Molecular Regulation of neurogenesis



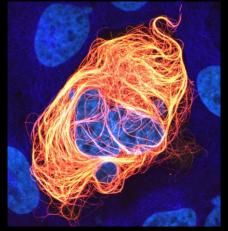
Multiplex 6 colors Cecilia Ruscitti GIGA Immunophysiology

Live cells imaging



Coculture monocyte Clotilde Hoyos GIGA cellular and molecular epigenetics

High resolution

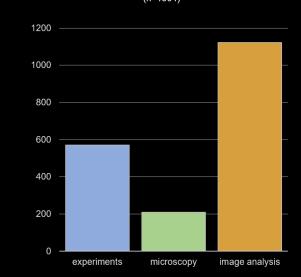


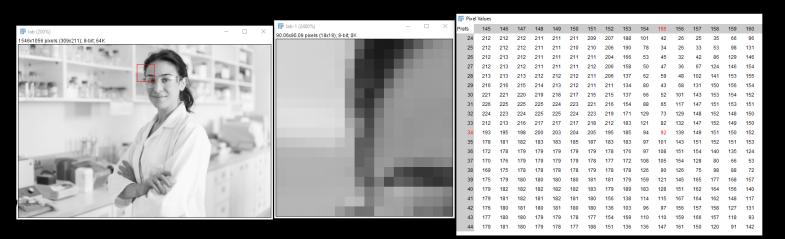
Cytoskeleton in osteocarsoma Maxime Gilsoul GIGA Molecular Regulation of neurogenesis

Limitations of classical image analysis

Perception problem:

- We love images too much, but we forget scientific analysis
- Images are a matrix of numbers and we have to reduce the complexity with measurements





Which step in imaging based research project is the most difficult for you ? Neubias survey 2015 (n=1904)

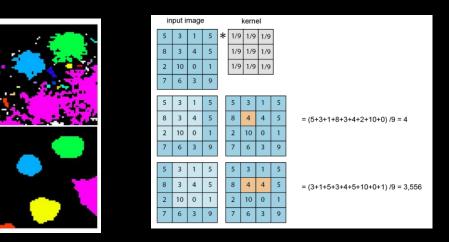
@ Vita Klochko

Limitations of classical image analysis

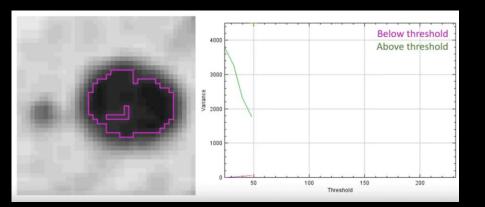
Traditional workflows problem:

One filter is not sufficient to understand the data. Machine learning will work in multi dimensional space and will

take a decision.



Example throsholding with Otsu



Search for a threshold where the variance in both classes (above/below threshold) becomes minimal

Mean (Class 1) =
$$\frac{1}{\text{number of } px \text{ in } class 1} \sum_{px \text{ } class 1} \text{intensity}(px)$$

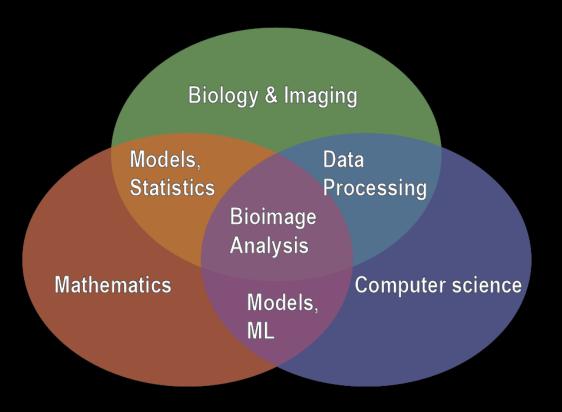
Var(Class 1) = $\frac{1}{\text{nbr of } pixel \text{ in } class 1} \sum_{px \text{ } class 1} (\text{intensity}(px) - \text{mean in } class 1)^2$

Within-Class variance = $\frac{\text{nbr px in class1}}{\text{nbr px in image}}$ Var(class1) + $\frac{\text{nbr px in class 2}}{\text{nbr px in image}}$ Var(class2)

Limitations of classical image analysis

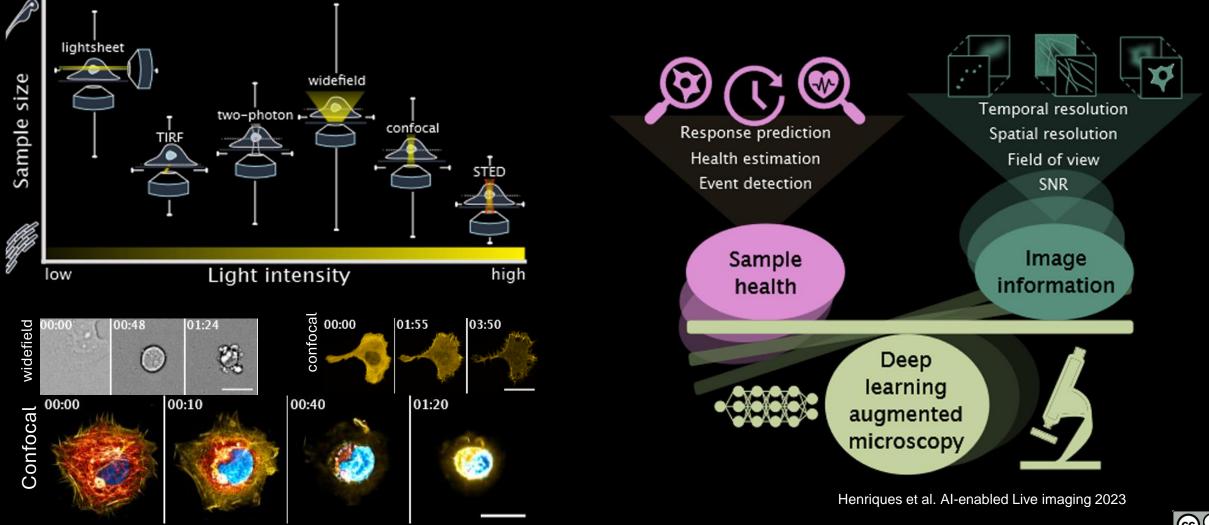
Bioinformatic problem:

- Computational science and biology have different vocabularies
- Traditional methods need notion in a lot of domains
- Expert in bio-images analysis bridge the gap between domains



Limitations of Fluorescence Microscopy

Light alter biological process under observation and promote photobleaching, photodamage and phototoxicity



Henriques et al. Al-enabled Live imaging 2023

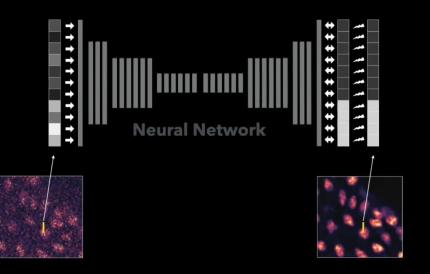
Denoising by Deep learning: CARE

Pro

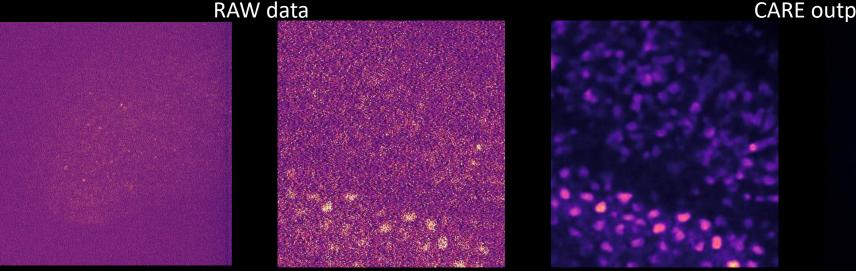
- + One of the best denoising methods
- + Can resolve complicated restoration task
- + Available in the platform with Python script

Con

- Need a lot of data for the training more than 200 paired images
- Can be hard to image high quality paired training data (ex: if particles moved significantly between the two acquisitions)



Martin Weigert et al. Nature Methods (2018)



CARE output

Thank to Rink lab, Planaria sample (Schmidtea mediterranea) at 0,5% laser and 10 ms per plane, low SNR and high noise

Noisy image

Denoising by Deep learning : N2V

Signal l Noise

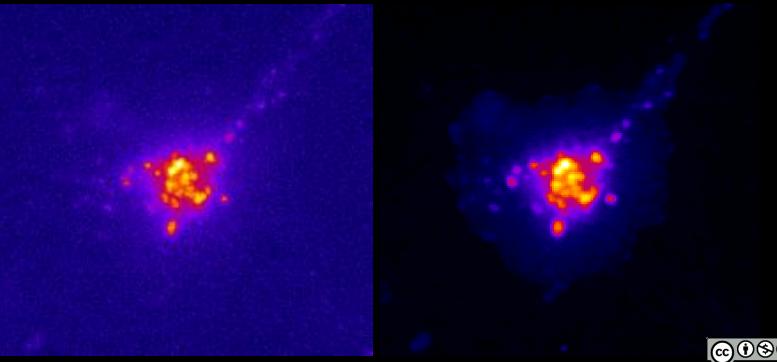
Pro

+ Don't need a lot of dataset (< 20 images)

+ Plugin Fiji work on CPU or GPU (5x faster available in the platform)

Con

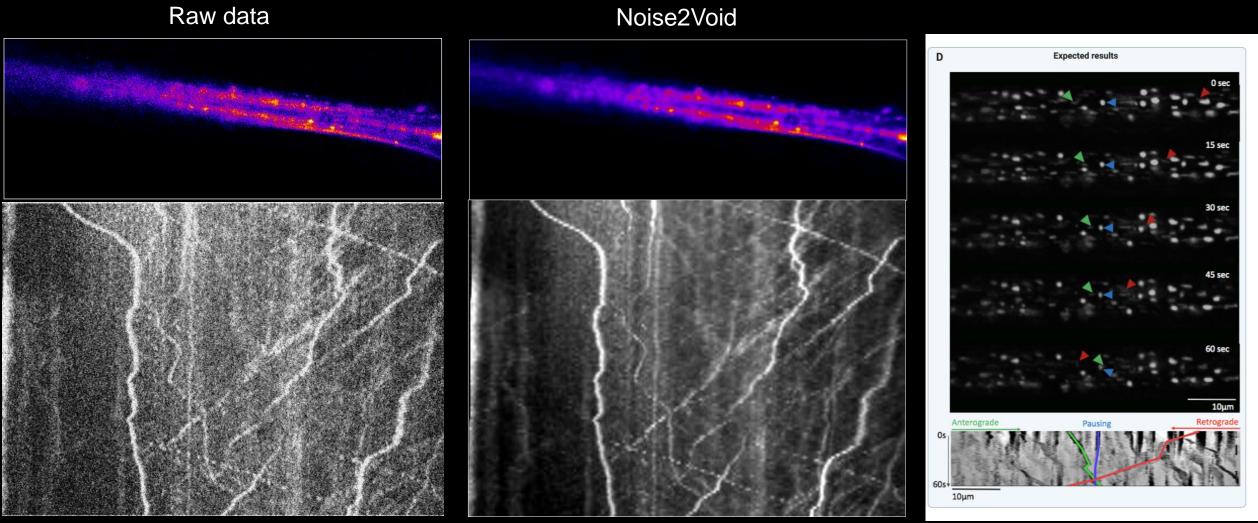
May not work if the noise is not pixel independent and present patterns.



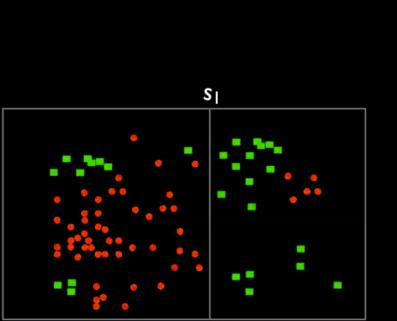


Alexander Krull et al. computer vision and pattern recognition (2019)

Example desoising for GIGA



Machine learning : Decision tree



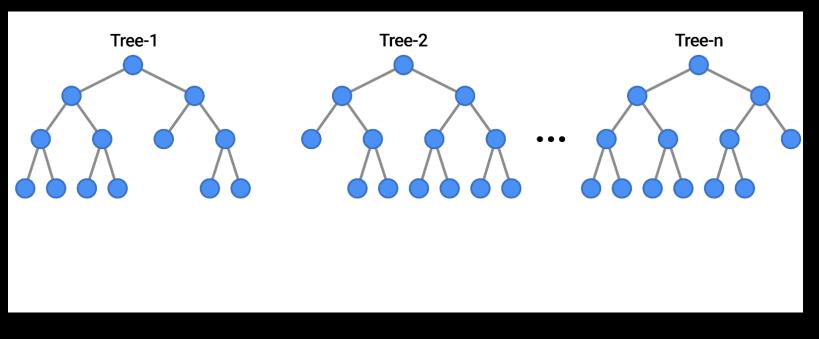
- Pro
- + Simple to interpret
- + Require little data preparation
- + Easy to process data with high dimension
- + Extremely Fast

Con

- Overfitting may happen (learn by heart) often with large (deep) tree

- A tiny change in the training data can cause large changes in the final result

Machine learning ex: Random forest



Pro

+ Use a large number of small trees (reduce variance)

+ Use majority rules = Robust and closer the true answer

Con

- Slower than one decision tree
- The more trees you have, the slower the process

- The more features you have, the slower the procecloserI the features / parameters if you don't need it)

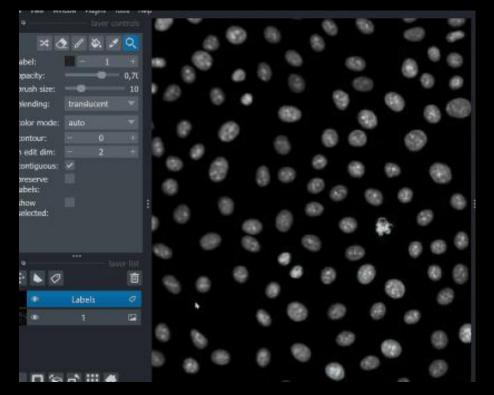
- Difficult to interpret

Machine learning ex: Random forest

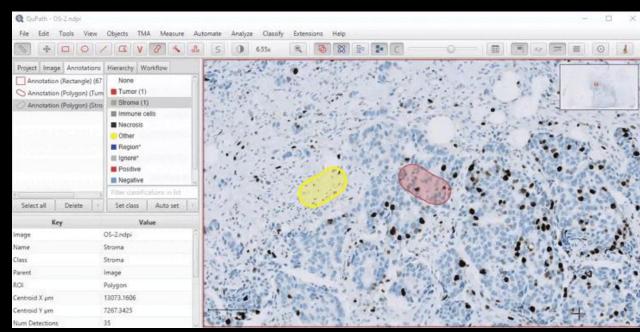
Machine learning algorithms can classify pixels and object to detect specific tissue, cells or staining.

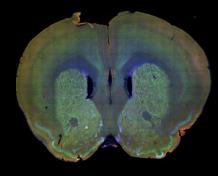
Only one skill is needed "drawing" / "painting" annotations

Pixel classifier for cells dectection

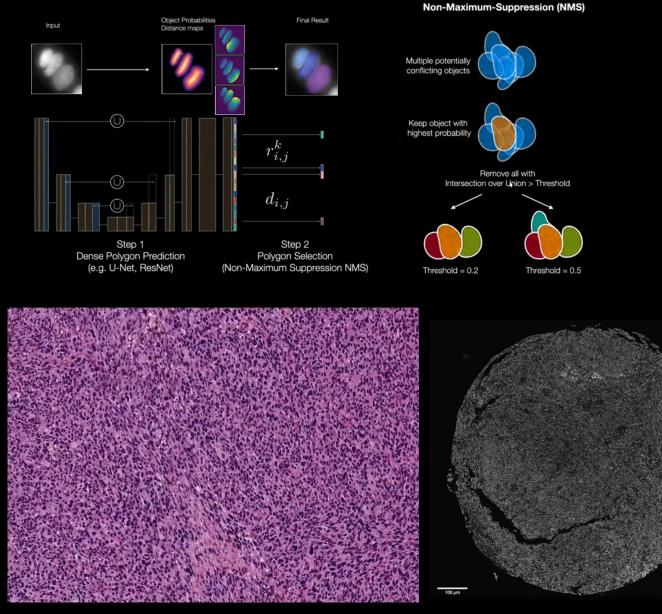


Object classifier for specific objects detection





Segmentation by Deep learning: Stardist



Pro

- + Work on 2D, 3D dataset
- + Work with fluorescence, Brightfield, or HE
- + Existing model work well on a lot of data
- + Available in the platform on Fiji and QuPath
- + Easy to train on personal annotations with QuPath

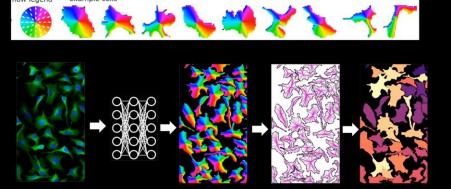
Con

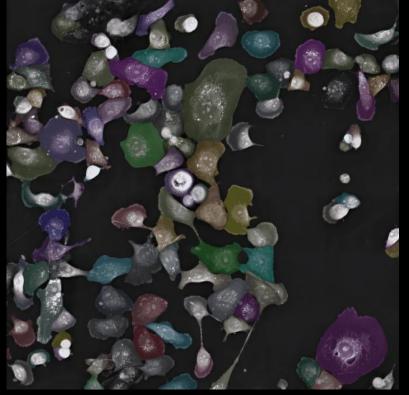
- Need cells with convex shape
- Can't help for the morphology (see cellpose)

Applications

Fluorescence measurements Counting Clustering Spatial omics

Segmentation by Deep learning: Cellpose





Pro

- + Work on 2D or 2D + T dataset
- + Work with fluorescence, Brightfield, or HE
- + Existing model work well on a lot of data
- + work on all cell morphology
- + Easy to train on personal annotations with the GUI and QuPath
- + Available in the platform on Fiji and QuPath and Napari

Con

- Very difficult to use on 3D dataset (need a lot of VRAM) because the predictions are computed 3 times in XY, XZ, and YZ directions

Applications

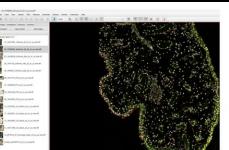
Fluorescence measurements Counting Clustering Spatial omics Morphology

Erik Maquoi, GIGA Cancer

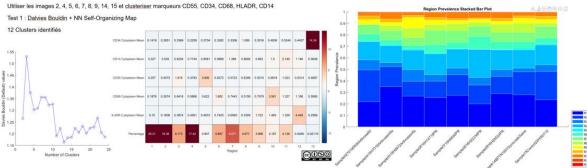
Clustering

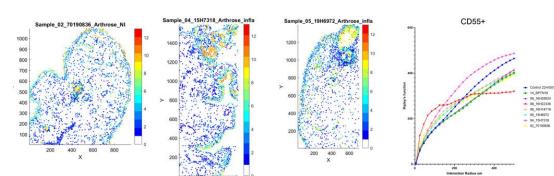
Multiplexing analysis with more than 40 markers



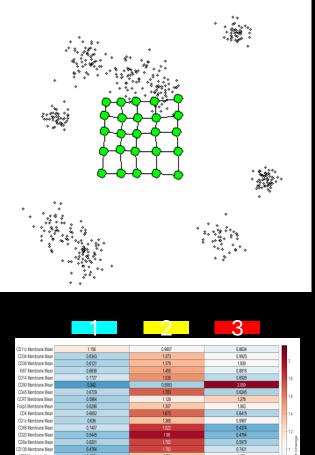


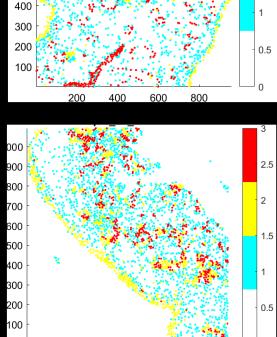
Analyse 3





NN Self Organisation MAP

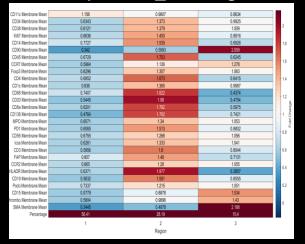




2.5

1.5

Ω



Quality control & Misconduct

Quality control:

Mask instant Comparator (MiC) compare segmentation masks from the prediction and the ground true

- Precision defined as $\frac{TP}{TP+FP}$
- \circ Recall (or sensitivity) defined as $\frac{TP}{TP+FN}$
- \circ Jaccard index (or global perecision) defined as $\frac{TP}{TP+FP+FN}$

 \circ F1-measure (or Sorensen Dice Coefficient - DSC) defined as $\frac{2TP}{2TP+FP+FN}$

Misconduct:

not publishing image analysis scripts, data, and sharing raw images.

For scripts : Github, Gitlab

For images : Biolmage Archive, Image Data Ressource, Figshare, Zenodo

