

Introduction to MRI data processing

MaRBEL educational February 2025

Christophe Phillips c.phillips@uliege.be

Who am I?

- Master in Electrical Engineering, then PhD. in Engineering
- Now FRS-FNRS Research Director & Professor
- ▶ Research and interest in "neuroimaging methods"
 → data processing of brain images (MRI and PET) and electro-physiological data (M/EEG)
- Linked to:
 - "GIGA CRC human imaging" research units
 - "GIGA in vivo imaging" technical platform.
 - Department of Electrical Engineering & Computer Science

Program

- MRI "flavours"
- MRI data processing
 - Within-/between-subject processing
 - Subject-/reference-space
 - Statistical inference
- "Vanilla fMRI protocol" example
- Take home message

MR scanner

- ▶ big magnet → e.g. 1.5, 3 or 7T
- ▶ antenna, aka. RF coil
 → emit/receive RF signal
- ▶ gradient coils
 → small linear changes
- ▶ electronics & computer
 → control & image
 reconstruction

MR imaging

Image obtained according to

- ▶ Pulse sequence
 - RF emission & reception \rightarrow signal *weighting*
 - linear magnetic gradient (in mT/m) \rightarrow local variation of *frequency* & phase
 - \rightarrow spatial encoding
- Image reconstruction

MRI "flavours"

Signal intensity "linked" to tissue properties

- Anatomical MRI
- Functional MRI
- Diffusion-weighted MRI
- Quantitative MRI
- CEST/QSM/spectroscopy/...

Anatomical MRI

Characteristics (typical)

- Voxel size,
 - at 3T, 1mm \rightarrow 1mm³
 - at 7T, .5-.8mm \rightarrow .25-.5mm³
- Acquisition time:
 - a few minutes
- Contrast between GM, WM, CSF, "other tissues"

Anatomical MRI

Anatomical MRI

Characteristics (typical)

- Voxel size,
 - at 3T, ~1mm \rightarrow ~1mm³
 - at 7T, .5-.8mm \rightarrow .25-.5mm³
- Acquisition time:
 - a few minutes
- Contrast between GM, WM, CSF, "other tissues"

Applications

- Morphometric study
- Lesion detection
- Anatomical reference
- Inter-subject anatomical alignment

• • •

Functional MRI

Characteristics (typical)

- Voxel size,
 - at 3T, 2-3mm \rightarrow 8-27mm³
 - at 7T, 1-2mm \rightarrow 1-8mm³
- Acquisition time, from 1 to 3 seconds/image (but continuous acquisition over 5-30 minutes)
- Signal intensity variation according to neuronal activation time course

Of neurons, blood & haemoglobin

Interpretation: Image (slightly) brighter where & when (but delay!) neurons are active.

Arthurs & Boniface, 2002, Trends in Neurosciences

Functional MRI

Characteristics (typical)

- Voxel size,
 - at 3T, 2-3mm \rightarrow 8-27mm³
 - at 7T, 1-2mm \rightarrow 1-8mm³
- Acquisition time, from 1 to 3 seconds/image (but continuous acquisition over 5-10 minutes)
- Signal intensity variation according to neuronal activation time course

Applications

- Activation localisation
- Experimental manipulation of activation (age, fatigue, learning,...)
- Functional/effective connectivity analysis
- Brain activity decoding

Characteristics (typical)

- Voxel size,
 - at 3T & 7T, 2-3mm \rightarrow 8-27mm³
- Acquisition time, from 1 to 3 seconds/image (but need 20+ images)
- Signal intensity decrease according to diffusion of (free) water in direction "poked"

https://radiopaedia.org/articles/diffusion-weighted-imaging-2

Characteristics (typical)

- Voxel size,
 - at 3T & 7T, 2-3mm \rightarrow 8-27mm³
- Acquisition time, from 1 to 3 seconds/image (but need 20+ images)
- Signal intensity variation according to diffusion of (free) water in direction "poked"

Applications

- Model water diffusion,
 i.e. proxy to axon orientation & density
- WM properties, e.g. tissue integrity
- Anatomical WM connectivity
- Correlation and group comparison analysis

Quantitative MRI

Characteristics (typical)

Voxel size,

- at 3T, .8-1mm \rightarrow .5-1mm³
- at 7T, .5-.8mm \rightarrow .13-.5mm³

Acquisition time: 10 to 30 minutes (for whole protocol)

Multiple series of

- T1-/PD-/MT-weighted images
- BO/B1 maps
- → quantification of tissue properties

Quantitative MRI interpretation

Weiskopf et al., https://doi.org/10.1038/s42254-021-00326-1

Quantitative MRI

Characteristics (typical)

- Voxel size,
 - at 3T, .8-1mm \rightarrow .5-1mm³
 - at 7T, .5-.8mm \rightarrow .13-.5mm³
- Acquisition time: 10 to 30 minutes (for whole protocol)
- Multiple series of
 - T1-/PD-/MT-weighted images
 - BO/B1 maps
 - quantification of tissue properties

Applications

- Tissue property analysis,
 e.g. correlation, difference,
 longitudinal changes,...
- Lesion detection & characterization
- Morphometric study
- Multi-scanner/centre study

•

Other sequences...

- Chemical Exchange Saturation Transfer (CEST) MRI
 molecular/metabolite concentration mapping
- Quantitative Susceptibility Mapping (QSM) MRI
 iron deposit & calcification mapping
- MRI Spectroscopy
 - → (chemical) metabolism & other nuclei mapping

Program

- MRI "flavours"
- MRI data processing
 - Within- /between-subject processing
 - Subject-/reference-space
 - Statistical inference
- "Vanilla fMRI protocol" example
- Take home message

Research in neuroscience

Neuroscientific question about the brain

- Acquire data from "many" subjects
- Grouping
 - single group ?
 - → within group activation, regression with continuous variable,...
 - 2 or more groups ? → group comparisons, regression, interaction,...
- Sessions
 - 1 session → cross-sectional study
 - sessions at t_0, t_1, t_2, \dots \rightarrow longitudinal study

Within AND between subject processing

Within-/between-subject

SS

Within-subject, i.e. using data from a single-subject

- Spatial processing:
 - Image alignment & "coregistration"
 - Artifacts detection & correction
 - Segmentation & "spatial normalisation" (=warp into reference space)
 - smoothing SS or RS
- Modelling
 - Create parametric "map of interest"
 - Statistical inference

In subject-space (SS) , reference-space (RS) or either one.

Spatial processing: within-subject

- "Rigid-body" transformation
 - Intra-modality, e.g. fMRI series, *realignment*
 - Inter-modality, e.g. (mean) fMRI and aMRI, coregistration
- Elastic transformation
 - Segmentation & "spatial normalisation" \rightarrow typically aMRI
 - Image deformation correction, i.e. "unwarping" → fMRI & DW-MRI ("Field mapping" or "Top-Up" but needs extra data!)
- ► Smoothing, i.e. reduce variability → maps for statistical analysis

Spatial processing: within-subject

1 subject's normalized & segmented aMRI + TPMs

6 subjects' normalized aMRI

fMRI smoothing

Within-/between-subject

Between-subject, i.e. using data from all subjects

- Spatial processing
 - Warping individual maps into "group average" reference space
- Modelling
 - Group-level model
 - Statistical inference
- In reference-space (RS)
 - Atlas and standardized coordinates
 - → Multi-subject analysis

Spatial processing: between-subject

- More flexible elastic , i.e. diffeomorphic, transformation
 - \rightarrow typically segmented aMRI

for VBM analysis

Template implicitly generated from data in study!

Modelling: within-subject fMRI

fMRI time-series modelling, i.e. General Linear Model (GLM)

- Model the signal (variance) based on $|y = X\beta + e|$
 - experimental protocol, e.g. stimuli, conditions, actions,...
 - confounding effects, e.g. haemodynamic response, movement,...
- Model the noise distribution C_i : noise level + autocorrelation signal
- Estimate the model parameters $\hat{\beta}$

 $e_i \sim N(0, C_i)$

- Build effect of interest \rightarrow linear contrast of parameters $c^T \hat{\beta}$
- Statistical inference of contrast value, with t-/F-test
 - \rightarrow objectively detect "effect of interest"

Modelling: within-subject fMRI

Height threshold T = $3.2057 \{p < 0.001\}$

response

20

Time (sec)

40

0

 $\ddot{\beta}_{2-7} = \{0.69, 1.96, 1.39, 166.10, 76.48, -64.82\}$ my my

 $\hat{\beta}_8 = 131.0040$

 $\hat{\beta}_1 = 3.9831$

T-test on effect of interest

20+ images acquired

- No gradient = reference signal
- With gradient to dephaserephase signal
 - ➔ signal loss due to waterdiffusion
- 1 image = 1 diffusion direction 'poked'

Modelling: within-subject DW-MRI

Fit tensor model to DWI data, i.e. DTI

▶ 6 parameters per voxel, i.e. 3D ellipsoid

 $\begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{bmatrix}$

diffusion

Derive scalar map(s)

- ➔ "interpretable" values
- Fiber tracking

Reflects strength of diffusion

Mean diffusivity

Fiber orientation distributions & connectomics 😼

Modelling: between-subject analysis

"Summary statistics", aka. RFX analysis

Statistics: hypothesis testing & inference

Significance level α :

Acceptable false positive rate α

 \Rightarrow threshold u_{α}

Threshold u_{α} controls the false positive rate

Conclusion about the hypothesis: Reject the null hypothesis H_0 if $t > u_{\alpha} \rightarrow$ favour the alternative hypothesis H_A

• p-value:
$$p(T > t|H_0)$$

- evidence against H_0 .
- "chance of observing value more extreme than t under H_0 .

$$\alpha = p(T > u_{\alpha}|H_0)$$

Statistics: multiple comparison problem

With 100000 voxels & $\alpha = .05$ \Rightarrow **5000 false positive voxels**. Need to

- define a H₀ for a <u>collection of tests</u>
- use <u>corrected p-values</u>.

Existing solutions

- "Family-wise error rate" (FWER) & "False discovery rate" (FDR)
- Should account for image smoothness, i.e. Bonferroni too conservative!
- Parametric vs non-parametric approaches

Program

- MRI "flavours"
- MRI data processing
 - Within-/between-subject processing
 - Subject-/reference-space
 - Statistical inference
- "Vanilla fMRI protocol" example
- Take home message

"Vanilla fMRI protocol" example

- 2x2 factorial design:
 - "famous" (F) vs "non-famous" (N) faces
 - first (1) vs repeated (2) presentation

- Timing of the presentations:
 - Same task for all subjects
- 12 subjects
 - ~350 fMRIs, TR = 2s
 - 1 anatomical MRI

Spatial processing: within-subject

- Head movement during ~12 minutes of fMRI acquisition
 *** "realignment"
- Match anatomical and (mean) functional MRI
 - → "coregistration"
- Bring all subjects brain image into same reference space
 - → "spatial normalization", aka. "warping"
- Variance reduction
 - → "smoothing"

Other possible steps:

slice time correction, fMRI artefact correction, diffeomorphic warping,...

Statistical analysis: within-subject, i.e. FFX

- Experimental design through "General Linear Model", i.e. model the 4 "conditions" (N1, N2, F1, F2) + movement parameters
- Contrast definition to test effect of interest at subject level

Single subject's activation

Contrast: *Faces > Baseline* i.e. "which part of the brain lights up when I see a face?"

SPM12: Graphics											x																
File	Edit	View In	sert To	ools [Desktop	Window	SPM Figure	Help				Ľ	Statist	ics: /	p-values ad	ljusted for	search	volume									
													set-leve	el	cluster-level				peak-level								
Positive effect of condition								tion_	1			р	С	P _{FWE-corr}	q _{FDR-corr}	^k E	P _{uncorr}	P _{FWE-corr}	q _{FDR-corr}	Т	(Z ₌)	P _{uncorr}	mm m	ım mm	nmm		
													0.000	18	0.000	0.000	1171	0.000	0.000	0.000	14.76	Inf	0.000	39	-70	-13	
[0, -1, -1]																	0.000	0.000	13.35	Inf	0.000	45	-46	-19			
										,				0.000	0.000	380	0.000	0.000	0.000	12.65	Inf	0.000	-42	-55	-19		
									contrast(s))								0.000	0.000	11.17	Inf	0.000	-39	-67	-22	
																			0.000	0.000	7.14	6.88	0.000	-42	-34	-19	
	1		<						5						0.000	0.000	144	0.000	0.000	0.000	9.97	Inf	0.000	45	23	23	
								¥.,							0.000	0.000	79	0.000	0.000	0.000	9.00	0.82 Inf	0.000	-27	-94	29	
	. 1														0.000	0.000	96	0.000	0.000	0.000	8.72	Inf	0.000	33	20	-1	
									Ē										0.001	0.028	5.68	5.54	0.000	54	17	2	
									- B										0.003	0.069	5.47	5.34	0.000	51	20	-13	
									50						0.000	0.000	51	0.000	0.000	0.000	7.86	7.51	0.000	-54	-22	23	
	1														0.000	0 000		0 000	0.000	0.000	6.72 7 71	6.50 7 30	0.000	-60	-10	26	
	-								100						0.000	0.001	21	0.001	0.000	0.000	7.60	7.28	0.000	30	-64	50	
							~ `								0.000	0.000	27	0.000	0.000	0.000	7.45	7.15	0.000	-33	23	-1	
		SPM{				SPM	SPM{1,,,}		450						0.000	0.000	148	0.000	0.000	0.000	6.59	6.38	0.000	-45	-34	65	
						322		150										0.000	0.002	6.26	6.07	0.000	-39	-16	65		
	- 1																		0.000	0.002	6.21	6.03	0.000	-54	-25	56	
		No. of Lot.							200						0.000	0.004	15	0.002	0.000	0.002	6.27	6.08	0.000	51	-37	8	
															0.000	0.162	6	0.120	0.005	0.079	5.30	5.19	0.000	40	59	20	
									250						0.002	0.050	table sh	ows 3 local r	naxima more t	han 8.0mm	apart	5.15	0.000	55	55	20	
												Height threshold: $T = 4.82$, $p = 0.000 (0.050)$							of freedom	- [1 0 322	01						
SPMresults: \data\face rep\categorical 300								Extent threshold: k = 0 voxels					FWHM = 10.7 10.7 10.3 mm mm mm; 3.6 3.6 3.4 {voxels}														
	Heigh	t threshold	T = 4.815	5822 {	p<0.05 (F	WE)							Expected	voxels p	er cluster, <k< td=""><td>> = 1.337</td><td></td><td></td><td>Volume:</td><td>1612683 = 5</td><td>59729 voxe</td><td>ls = 1229.6</td><td>resels</td><td>,</td><td></td><td></td></k<>	> = 1.337			Volume:	1612683 = 5	59729 voxe	ls = 1229.6	resels	,			
	Exter	t threshold	x = 0 vox	els	(14			350				Expected	number	of clusters, <	c>=0.05			Voxel siz	e: 3.0 3.0 3.	0 mm mm r	nm; (resel :	= 43.44 voxel	s)			
									000 -	5 10	15		FWEp: 4.8	816, FDF	Rp: 5.581, FW	Ec: 1, FDRc	: 15		Page 1							<>	
										Design matri	ix															1	
										-																	

Statistical analysis: between-subject, i.e. RFX

- Experimental design through "General Linear Model", i.e. model the 4 "conditions" (N1, N2, F1, F2) + movement parameters
- Contrast definition to test effect of interest at subject level
- Group-level analysis, i.e. "Random Effect" analysis
 - Summarize effect of interest at subject level, i.e. contrast of interest
 - Group-level 1-sample t-test
- Classical inference with t-/F-test
- Correction for "multiple comparison problem"

Group-level analysis, i.e. RFX

Group-level activation

12 subjects, with "Faces > Baseline" contrast

1-sample t-test model, no regressor

Program

- MRI "flavours"
- MRI data processing
 - Within-/between-subject processing
 - Subject-/reference-space
 - Statistical inference
- "Vanilla fMRI protocol" example
- ► Take home message

"MRI data processing" take home message

- MRI = very flexible technique
- Multiple "flavours" of MRIs can be acquired in 1 session
- ...but not all, as scanning time is limited (subject's comfort!)
- ...so must chose what is relevant for the project!
- Data curation (safe storage, clear filenaming & organization) required
- Complicated data to process :
 - multiple steps/tools
 - different steps/tools for different MRI flavours
- Computer intensive data processing, i.e. need scripting!

"MRI data processing" take home message

Use existing tools to process and analyse your data!

- SPM & many extensions, <u>https://www.fil.ion.ucl.ac.uk/spm/</u>
- ► FSL, <u>https://fsl.fmrib.ox.ac.uk/fsl/</u>
- ► AFNI, <u>https://afni.nimh.nih.gov/</u>
- ► fMRIprep, <u>https://fmriprep.org/en/stable/</u>
- MRtrix3, <u>https://www.mrtrix.org/</u>
- ANTs, <u>https://stnava.github.io/ANTs/</u>

```
• •••
```

Favour open-source and well-established tools !

Thank you for your attention!

