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Single voxel inference 
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Null distribution of test statistic T 𝜶 = 𝒑(𝒕 > 𝒖|𝑯𝟎) 

u 

Decision rule (threshold) u: 

   determines false positive  
   rate α 

Null Hypothesis H0:  
   zero activation 

 Choose u to give 
acceptable α under H0 



Classical hypothesis testing… 
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• Null hypothesis H 
– test statistic 

– null distributions 

• Hypothesis test 
– control Type I error 

• incorrectly reject H 

– test level  
• Pr(“reject” H | H)   

• p –value 
– min  at which H 

rejected 

– Pr(T  t | H) 

– characterising “surprise” 

t –distribution, 32 df. 

F –distribution, (10,32) df. 



Sensitivity = TP/(TP+FN) = b  

Specificity = TN/(TN+FP) = 1 -  

FP = Type I error or ‘error’ 
FN = Type II error 
 = p-value/FP rate/error rate/significance level 
b = power 

Sensitivity & specificity 

ACTION 

Don’t 
reject 

Reject 

TRUTH H0 true 
True 
Negative 

False 
Positive 

H0 false 
False 
Negative 

True 
Positive 



Multiple tests 
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Signal 

If we have 100000 voxels, α=0.05  

 5000 false positive voxels. 
 
This is clearly undesirable!  
Need to define a null hypothesis for 
a collection of tests. 

Noise 



Multiple tests 
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If we have 100000 voxels, α=0.05  

 5000 false positive voxels. 
 
This is clearly undesirable!  
Need to define a null hypothesis for 
a collection of tests. 

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 

Use of ‘uncorrected’ p-value, α =0.1 

Percentage of Null Pixels that are False Positives 

Noisy data 



Where’s the signal? 

t > 0.5 t > 3.5 t > 5.5 

High Threshold Med. Threshold Low Threshold 

Good Specificity 
 

Poor Power 
(risk of false 
negatives) 

Poor Specificity 
(risk of false 

positives) 
 

Good Power 

Assessing statistics images 
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Family-Wise Null Hypothesis 

13 
FWE 

Use of ‘corrected’ p-value, α =0.1 

Use of ‘uncorrected’ p-value, α =0.1 

Family-Wise Null Hypothesis: 
Activation is zero everywhere 

If we reject a voxel null hypothesis at any voxel, 
we reject the family-wise Null hypothesis  

A FP anywhere in the image gives a Family Wise Error (FWE) 

Family-Wise Error rate (FWER) = ‘corrected’ p-value 



Bonferroni correction 
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The Family-Wise Error rate (FWER), αFWE,  for  a 

family of N tests follows the inequality: 
 
 
 
where α is the test-wise error rate. 

𝛼𝐹𝑊𝐸 ≤ 𝑁𝛼 

𝛼 =
𝛼𝐹𝑊𝐸
𝑁

 

Therefore, to ensure a particular FWER choose: 

This correction does not require the tests to be 
independent but becomes very stringent if 
dependence. 



Bonferroni correction, example 

• Experiment with N = 100000 independent voxels and 40 
d.f. 

– v = unknown corrected probability threshold,  

– find v such that family-wise error rate  = 0.05 

• Bonferroni correction: 

– probability that all tests are below the threshold, 

– use v =  / N 

– here v=0.05/100000=0.0000005  

 threshold t = 5.77  

• Interpretation: 

Bonferroni procedure gives a corrected p-value,  

i.e. for a t statistics = 5.77,  

– uncorrectd p value = 0.0000005 

– corrected p value = 0.05 
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100 by 100 voxels. 
10000 independent measures 
Fix the PFWE = 0.05, z threshold ? 

100 by 100 voxels. 
100 independent measures 
Fix the PFWE = 0.05, z threshold ? 

v=/ni where ni is the number of independent observations. 

Bonferroni:  
v = 0.05 / 10000 = 0.000005  
      threshold z = 4.42 

Bonferroni:  
v = 0.05 / 100 = 0.0005  
    threshold z = 3.29 

Bonferroni & independent observations 



100 by 100 voxels. 
10000 independent measures 
Fix the PFWE = 0.05, z threshold ? 

100 by 100 voxels. 
How many independent 
measures ??? 

Bonferroni:  
v = 0.05 / 10000 = 0.000005  
      threshold z = 4.42 

Bonferroni & independent observations 



Random Field Theory 
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 Consider a statistic image as a discretisation of a 
 continuous underlying random field. 
 
 Use results from continuous random field theory. 

lattice 
representation 



RFT and Euler Characteristic 
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   𝐹𝑊𝐸𝑅 = 𝑝 𝐹𝑊𝐸  
              ≈  𝐸 𝜒𝑢  

Euler Characteristic 𝜒𝑢: 
 Topological measure 

    𝜒𝑢  =  # blobs - # holes  

 
 at high threshold u: 

    𝜒𝑢  =  # blobs 



Euler characteristic… 

Threshold z-map 
at 2.75 

EC = 1 

Threshold z-map 
at 2.50 

EC = 3 



Expected Euler Characteristic 
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𝐸 𝜒𝑢 = 𝜆 Ω Λ
1 2  𝑢 exp (−𝑢2/2)/(2𝜋)3/2 

2D Gaussian Random Field 

100 x 100 Gaussian Random Field 
with FWHM=10 smoothing 
α𝐹𝑊𝐸 = 0.05  𝑢𝑅𝐹𝑇 = 3.8 

(𝑢𝐵𝑂𝑁𝐹 = 4.42,  𝑢𝑢𝑛𝑐𝑜𝑟𝑟= 1.64) 

Search volume 
Roughness 

(1/smoothness) 
Threshold 



Smoothness 
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Smoothness parameterised in terms of FWHM: 
Size of Gaussian kernel required to smooth i.i.d. noise to 
have same smoothness as observed null (standardized) 
data.  
 

 = b + Y X 

data matrix 

d
e
si

g
n

 m
a

tr
ix

 

parameters errors + ? =  ? 
voxels 

scans 

 estimate 

b 
^ 

 residuals 

estimated 

component 

fields 

parameter 

estimates 

variance s2 

estimated variance 

 

 
= 

FWHM 

1 2 3 4 

2 4 6 8 10 1 3 5 7 9 

RESELS (Resolution Elements): 
1 RESEL = 𝐹𝑊𝐻𝑀𝑥𝐹𝑊𝐻𝑀𝑦𝐹𝑊𝐻𝑀𝑧 
RESEL Count R = volume of search region in units of smoothness 

Eg: 10 voxels, 2.5 FWHM, 4 RESELS 

The number of resels is similar, but not 
identical to the number independent 
observations. 
Smoothness estimated from 
spatial derivatives of standardised 
residuals: 
Yields an RPV image containing local 
roughness estimation. 



RFT intuition 
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 Corrected p-value for statistic value t  

•  Statistic value t increases ? 

– 𝑝𝑐 decreases (better signal) 

•  Search volume increases ( () ↑ ) ? 

– 𝑝𝑐 increases (more severe correction) 

•  Smoothness increases ( ||1/2 ↓ ) ? 

– 𝑝𝑐 decreases (less severe correction) 

𝑝𝑐 = 𝑝 max𝑇 > 𝑡  
      ≈  𝐸 𝜒𝑡  
      ∝  𝜆 Ω Λ 1 2  𝑡 exp (−𝑡2/2) 



RFT, unified theory 
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General form for expected Euler characteristic 
 •  t, F & 2 fields • restricted search regions • D dimensions • 

Rd (): d-dimensional Lipschitz-Killing 

curvatures of  (≈ intrinsic volumes): 
 – function of dimension, 

     space  and smoothness: 

 

       R0() = () Euler characteristic of  

       R1() = resel diameter 

       R2() = resel surface area 

       R3() = resel volume 

 

rd (u) : d-dimensional EC density of the field 
 – function of dimension and threshold, 

    specific for RF type: 

E.g. Gaussian RF:  

 r0(u) = 1- (u)  

 r1(u) = (4 ln2)1/2  exp(-u2/2) / (2p) 

 r2(u) = (4 ln2)     u     exp(-u2/2) / (2p)3/2 

 r3(u) = (4 ln2)3/2  (u2 -1)    exp(-u2/2) / (2p)2 

 r4(u) = (4 ln2)2     (u3 -3u)  exp(-u2/2) / (2p)5/2 

 

 
 

𝐸 𝜒𝑢(Ω) =  𝑅𝑑(Ω)ρ𝑑(𝑢)

𝐷

𝑑=0

 



Estimated component fields 

data matrix 
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Each row is 
an estimated 
component field 
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Smoothness, PRF, ResEls... 

• Smoothness ||  
– variance-covariance matrix of 

partial derivatives (possibly location 
dependent) 

 
 
 
 
 

• Point Response Function PRF 
 
 
 
 
 

 
• Full Width at Half Maximum 

FWHM. Approximate the peak of 
the Covariance function with a 
Gaussian 

• Gaussian PRF 

–   – kernel var/cov matrix 
–  ACF  2  
–   = (2)-1 
FWHM f = s (8ln(2)) 
  fx 0 0 
–     0  fy 0 1 

 0 0  fz  8ln(2) 
ignoring covariances 

 || = (4ln(2))3/2 / (fx  fy  fz) 

 
• Resolution Element (ResEl) 

– Resel dimensions (fx  fy  fz) 
– R3() = () / (fx  fy  fz) 

if strictly stationary 

 
E[(Au)] = R3() (4ln(2))3/2 (u 2 -1) exp(-u 2/2) 

/ (2p)2  

      R3() (1 – (u)) 
 for high thresholds u 



RFT assumptions 

• The statistic image is assumed to be a good  
lattice representation of an underlying random 
field with a multivariate Gaussian distribution. 

• These fields are continuous, with an autocorrelation 
function twice differentiable at the origin. 
 

 The threshold chosen to define clusters is high  
enough such that the expected EC is a good  
approximation to the number of clusters. 

 The lattice approximation is reasonable, which implies the 
smoothness is relatively large compared to the voxel size. 

 The errors of the specified statistical model are normally 
distributed, which implies the model is not misspecified. 

 

• Smoothness of the data is unknown and estimated: 
very precise estimate by pooling over voxels  stationarity 
assumption. 
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Signal 

Signal+Noise 

Noise 

FDR illustration: 



11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 

Control of Per Comparison Rate at 10% 

Percentage of Null Pixels that are False Positives 

FWE 

Control of Familywise Error Rate at 10% 

Occurrence of Familywise Error 

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7% 

Control of False Discovery Rate at 10% 

Percentage of Activated Pixels that are False Positives 



Benjamini & Hochberg Procedure 

• Select desired limit  on E(FDR) 

• Order p-values, p(1)  p(2)   ...  p(V) 

• Let r be largest i such that 

 

 

• Reject all hypotheses  
corresponding to 
 p(1), ... , p(r). 

p(i)   i/V* 

p(i) 

i/V 

i/V  /c(V) 

p
-v

al
u
e 

0 1 

0
 

1
 

JRSS-B (1995) 57:289-300 



Signal Intensity 3.0 Signal Extent   1.0 Noise Smoothness 3.0 

p =  z =  

1 

B&H: Varying Signal Extent 



Signal Intensity 3.0 Signal Extent   2.0 Noise Smoothness 3.0 

p =  z =  

2 

B&H: Varying Signal Extent 



Signal Intensity 3.0 Signal Extent   3.0 Noise Smoothness 3.0 

p =  z =  

3 

B&H: Varying Signal Extent 



Signal Intensity 3.0 Signal Extent   5.0 Noise Smoothness 3.0 

p = 0.000252 z = 3.48 

4 

B&H: Varying Signal Extent 



Signal Intensity 3.0 Signal Extent   9.5 Noise Smoothness 3.0 

p = 0.001628 z = 2.94 
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B&H: Varying Signal Extent 



Signal Intensity 3.0 Signal Extent 16.5 Noise Smoothness 3.0 

p = 0.007157 z = 2.45 
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B&H: Varying Signal Extent 



Signal Intensity 3.0 Signal Extent 25.0 Noise Smoothness 3.0 

p = 0.019274 z = 2.07 

7 

B&H: Varying Signal Extent 



Benjamini & Hochberg: Properties 

• Adaptive 

– Larger the signal, the lower the threshold 

– Larger the signal, the more false positives 

• False positives constant as fraction of 
rejected tests 

• Not a problem with imaging’s sparse 
signals 

• Smoothness OK 

– Smoothing introduces positive correlations 
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Topological inference 
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Topological feature: 
Peak height 

space 

Peak level inference 



Topological inference 
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Topological feature: 
Cluster extent 

Cluster level inference 

space 

uclus 

uclus : cluster-forming threshold 

You MUST use a sufficiently high cluster-
forming threshold uclus, i.e. punc < .001  



Topological inference 
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Topological feature: 
Number of clusters 

Set level inference 

uclus : cluster-forming threshold 

space 

uclus 

c 



Peak, cluster & set level inference 
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Peak level test: 

height of local maxima 

Cluster level test: 

spatial extent above u 

Set level test: 

number of clusters 

above u 

 

Sensitivity 

 

Regional 

specificity 

 

: significant at the set level 

: significant at the cluster level 

: significant at the peak level 

  L1 > spatial extent threshold 
  L2 < spatial extent threshold 



Levels of inference… 

Parameters 
u   - 3.09 

k   - 12  voxels 

S   - 323 voxels 

FWHM  - 4.7 voxels 

D   - 3 

n=82 

n=32 

n=12 

Omnibus 
P(c7 | n  0, t  3.09) = 0.031 

Set-level 
P(c  3 | n  12, t  3.09) = 0.019 

Cluster-level 
P(c  1 | n  82, t  3.09) = 0.029 (corrected) 
P(n  82 | t  3.09)  = 0.019 (uncorrected) 

Voxel-level 
P(c  1 | n  0, t  4.37) = 0.048 (corrected) 

P(t  4.37) = 1 - {4.37} < 0.001 (uncorrected) 

t=4.37 



Small volume correction 

If one has some a priori idea of where an activation 
should be, one can pre-specify a small search space 
and make the appropriate correction instead of 
having to control for the entire search space 

– mask defined  by (probabilistic) anatomical atlases 

– mask defined by separate "functional localisers" 

– mask defined by orthogonal contrasts 

– search volume around previously reported coordinates 
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With no prior hypothesis: 
1. Test whole volume. 
2. Identify SPM peak.  
3. Then make a test assuming a single voxel. 



Small Volume Correction 

SVC = correction for multiple comparison in a 
user’s defined volume ‘of interest’. 

Shape and size of 
volume become 
important for small or 
oddly shaped volume ! 

Example of  SVC (900 voxels) 

• compact volume: samples 

from maximum 16 resels 

• spread volume: sample 

from up to 36 resels 
 threshold higher for 

spread volume than 
compact volume. 



Small volume correction, topology 

48 FWHM=20mm 
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Non-parametric permutation test 

• Parametric methods 

– Assume distribution of 
statistic under null 
hypothesis 

 

 

• Nonparametric methods 

– Use data to find  
distribution of statistic 
under null hypothesis 

– Any statistic! 
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Permutation Test : Toy Example 

• Data from V1 voxel in visual stim. experiment 
A: Active, flashing checkerboard   B: Baseline, fixation 

6 blocks, ABABAB     Just consider block averages... 

 

 

 

• Null hypothesis Ho  
– No experimental effect, A & B labels arbitrary 

• Statistic 
– Mean difference  

A B A B A B 

103.00 90.48 99.93 87.83 99.76 96.06 



Permutation Test : Toy Example 

• Under Ho 

– Consider all equivalent relabelings 

 

AAABBB ABABAB BAAABB BABBAA 

AABABB ABABBA BAABAB BBAAAB 

AABBAB ABBAAB BAABBA BBAABA 

AABBBA ABBABA BABAAB BBABAA 

ABAABB ABBBAA BABABA BBBAAA 



Permutation Test : Toy Example 

• Under Ho 

– Consider all equivalent relabelings 

– Compute all possible statistic values 

AAABBB   4.82 ABABAB   9.45 BAAABB  -1.48 BABBAA  -6.86 

AABABB  -3.25 ABABBA   6.97 BAABAB   1.10 BBAAAB   3.15 

AABBAB  -0.67 ABBAAB   1.38 BAABBA  -1.38 BBAABA   0.67 

AABBBA  -3.15 ABBABA  -1.10 BABAAB  -6.97 BBABAA   3.25 

ABAABB   6.86 ABBBAA   1.48 BABABA  -9.45 BBBAAA  -4.82 



Permutation Test : Toy Example 

• Under Ho 

– Consider all equivalent relabelings 

– Compute all possible statistic values 

– Find 95%ile of permutation distribution 

AAABBB   4.82 ABABAB   9.45 BAAABB  -1.48 BABBAA  -6.86 

AABABB  -3.25 ABABBA   6.97 BAABAB   1.10 BBAAAB   3.15 

AABBAB  -0.67 ABBAAB   1.38 BAABBA  -1.38 BBAABA   0.67 

AABBBA  -3.15 ABBABA  -1.10 BABAAB  -6.97 BBABAA   3.25 

ABAABB   6.86 ABBBAA   1.48 BABABA  -9.45 BBBAAA  -4.82 



Permutation Test : Toy Example 

• Under Ho 

– Consider all equivalent relabelings 

– Compute all possible statistic values 

– Find 95%ile of permutation distribution 



Permutation Test : Toy Example 

• Under Ho 

– Consider all equivalent relabelings 

– Compute all possible statistic values 

– Find 95%ile of permutation distribution 

AAABBB   4.82 ABABAB   9.45 BAAABB  -1.48 BABBAA  -6.86 

AABABB  -3.25 ABABBA   6.97 BAABAB   1.10 BBAAAB   3.15 

AABBAB  -0.67 ABBAAB   1.38 BAABBA  -1.38 BBAABA   0.67 

AABBBA  -3.15 ABBABA  -1.10 BABAAB  -6.97 BBABAA   3.25 

ABAABB   6.86 ABBBAA   1.48 BABABA  -9.45 BBBAAA  -4.82 



Controlling FWER: Permutation Test 

• Parametric methods 

– Assume distribution of 
max statistic under null 
hypothesis 

 

• Nonparametric methods 

– Use data to find  
distribution of max statistic 
under null hypothesis 

– Again, any max statistic! 



Permutation Test & Exchangeability 

• Exchangeability is fundamental 

– Def: Distribution of the data unperturbed by permutation 

– Under H0, exchangeability justifies permuting data 

– Allows us to build permutation distribution 

 

• Subjects are exchangeable 

– Under Ho, each subject’s A/B labels can be flipped 

 

• Are fMRI scans exchangeable under Ho? 

– If no signal, can we permute over time? 



Permutation Test & Exchangeability 

• fMRI scans are not exchangeable 

– Permuting disrupts order, temporal autocorrelation 

 

• Intrasubject fMRI permutation test 

– Must decorrelate data, model before permuting 

– What is correlation structure? 

• Usually must use parametric model of correlation 

– E.g. Use wavelets to decorrelate 

• Bullmore et al 2001, HBM 12:61-78 

 

• Intersubject fMRI permutation test 

– Create difference image for each subject 

– For each permutation, flip sign of some subjects 



Permutation Test : Example 

• fMRI Study of Working Memory    

– 12 subjects, block design  Marshuetz et al (2000) 

– Item Recognition 

• Active:View five letters, 2s pause, 
 view probe letter, respond 

• Baseline: View XXXXX, 2s pause, 
 view Y or N, respond 

• Second Level RFX 

– Difference image, A-B constructed 
for each subject 

– One sample, smoothed variance t test 

D 

yes UBKDA 

Active 

N 

no XXXXX 

Baseline 



Permutation Test : Example 

• Permute! 
– 212 = 4,096 ways to flip 12 A/B labels 

– For each, note maximum of t image 

 

Permutation Distribution 

Maximum  t 

Maximum Intensity Projection 

Thresholded t 



t11 Statistic, RF & Bonf. Threshold t11 Statistic, Nonparametric Threshold 

uRF   = 9.87 
uBonf = 9.80 
5 sig. vox.  

uPerm = 7.67  
58 sig. vox. 

Test Level vs. t11 Threshold 

•Compare with Bonferroni 
  = 0.05/110,776 

•Compare with parametric RFT 
 110,776  222mm voxels 
 5.15.86.9mm FWHM 
    
 smoothness 
 462.9 RESELs 



  t Threshold 
(0.05 Corrected) 

 df RF Bonf Perm 

Verbal Fluency 4 4701.32 42.59 10.14 
Location Switching 9 11.17 9.07 5.83 
Task Switching 9 10.79 10.35 5.10 
Faces: Main Effect 11 10.43 9.07 7.92 
Faces: Interaction 11 10.70 9.07 8.26 
Item Recognition 11 9.87 9.80 7.67 
Visual Motion 11 11.07 8.92 8.40 
Emotional Pictures 12 8.48 8.41 7.15 
Pain: Warning 22 5.93 6.05 4.99 
Pain: Anticipation 22 5.87 6.05 5.05 

 

Generalization: RFT vs Bonf. vs Perm. 



RFT vs Bonf. vs Perm. 

  No. Significant Voxels 
(0.05 Corrected) 

  t  
 df RF Bonf Perm  

Verbal Fluency 4 0 0 0  
Location Switching 9 0 0 158  
Task Switching 9 4 6 2241  
Faces: Main Effect 11 127 371 917  
Faces: Interaction 11 0 0 0  
Item Recognition 11 5 5 58  
Visual Motion 11 626 1260 1480  
Emotional Pictures 12 0 0 0  
Pain: Warning 22 127 116 221  
Pain: Anticipation 22 74 55 182  
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• Don’t threshold, model the signal! 

– Signal location? 

• Estimates and CI’s on 
(x,y,z) location 

– Signal magnitude? 

• CI’s on % change 

– Spatial extent? 

• Estimates and CI’s on activation volume 

• Robust to choice of cluster definition 

• ...but this requires an explicit spatial 
model 

What we’d like 

space 

Loc.̂
q̂Ext.

q̂Mag.



Real-life inference: What we get 

• Signal location 

– Local maximum  –  no inference 

– Center-of-mass  –  no inference 

• Sensitive to blob-defining-threshold 

• Signal magnitude 

– Local maximum intensity  –  P-values (& CI’s) 

• Spatial extent 

– Cluster volume  –  P-value, no CI’s 
• Sensitive to blob-defining-threshold 



FWER vs. FDR 

 

You MUST account for multiplicity 

(Otherwise have a fishing expedition) 

 

• FWER 

– Very specific, not very sensitive 

 

• FDR 

– Less specific, more sensitive 

(Sociological calibration still underway) 

 



Conclusion 

 

• There is a multiple testing problem and 
corrections must be applied on p-values, possibly 
for the volume of interest only (see SVC). 
 

• Inference is made about topological features 
(peak height, spatial extent, number of clusters). 
Use results from the Random Field Theory.  
Or permutation tests. 
 

• Control of FWER (probability of a false positive 
anywhere in the image) for a space of any 
dimension and shape. 
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• And now a little demo! 
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