NeuroImaging Data Processing

aka. Statistical Parametric Mapping short course

Course 6:

Random Effect Analysis

Christophe Phillips

Random effects & variance components

- Fixed effects
 - Are you confident that a new observation from any of subjects 1-3 will be around their mean?
 - Yes! using within-subjects variance
 - infer for these subjects case study
- Random effects
 - Are you confident that a new observation from a new subject will be around the mean of first 3?
 - No! using between-subjects variance
 - infer for any subject population

Random Effects Illustration

Standard linear model

 $Y = X\beta + \varepsilon$

assumes only one source of *iid* random variation

- Consider this RT data
- Here, two sources
 - Within subject var.
 - Between subject var.
 - Causes dependence in ε

Fixed vs. Random effects

- Fixed Effects
 Intra-subject
 variation suggests
 all these subjects
 different from zero
- Random Effects

Intersubject variation suggests population not very different from zero

- Fixed is not "wrong," just usually is not of interest
- Fixed Effects Inference

 "I can see this effect in this cohort"
- Random Effects Inference
 - "If I were to sample a new cohort from the population I would get the same result"

Multi-subject analysis...?

Two-stage analysis of random effect...

Two stage random effects, group comparison

Summary

- Analyse subjects individually
 - Build within-subject models
 - Calculate contrast(s) of interest
- Use contrast images in a 2nd level (Random Effect, RFX) analysis
 - Build between-subject model
 - Calculates SPMs of interest
- Draw conclusions for the population

Variance-Covariance matrix

Weight of Swedish men

 μ =180cm, σ =14cm (σ ²=200)

 μ =80kg, σ =14kg (σ ²=200)

Each completely characterised by μ (mean) and σ^2 (variance), i.e. we can calculate $p(l|\mu,\sigma^2)$ for any *l*

Variance-Covariance matrix

 Now let us view height and weight as a 2dimensional stochastic variable (p(I,w)).

Sphericity

$$y = X\beta + \varepsilon$$

$$C_{\varepsilon} = Cov(\varepsilon) = E(\varepsilon \varepsilon^{T})$$

, sphericity' means:

$$Cov(\varepsilon) = \sigma^2 I$$
i.e.
$$Var(\varepsilon_i) = \sigma^2$$

$$\int_{0^{\frac{1}{2}}} \int_{0^{\frac{1}{2}}} \int_{0^{\frac{1}{2}}}$$

Non-sphericity

 $Cov(\varepsilon) = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$

non-sphericity means that the error covariance doesn't look like this:

$$Cov(\varepsilon) = \sigma^2 I$$

Example I

Auditory Presentation (SOA = 4 secs) of (i) words and (ii) words spoken backwards

U. Noppeney et al.

Population differences

Stimuli:	Auditory Presentation (SOA = 4 secs) of words				
	Motion	Sound	Visual	Action	
	"jump"	"click"	"pink"	"turn"	
Subjects: (i) 12 control subjects					
Scanning:	fMRI, 250 scans per subject, block design				
Question:	What regions by the sema the words?	Vhat regions are affected y the semantic content of he words? U. Noppeney et al.			

SPM Notation: iid case

$$\underbrace{y}_{N\times 1} = \underbrace{X}_{N\times p} \quad \underbrace{\theta}_{p\times 1} + \underbrace{\varepsilon}_{N\times 1}$$

- 12 subjects, 4 conditions
 - Use F-test to find differences btw conditions

- Identical distribution
- Independence
- "Sphericity"... but here not realistic!

$\operatorname{Cor}(\mathcal{C})=/I$

Error covariance N

Multiple Variance Components

$$\underbrace{y}_{N\times 1} = \underbrace{X}_{N\times p} \quad \underbrace{\theta}_{p\times 1} + \underbrace{\varepsilon}_{N\times 1}$$

- 12 subjects, 4 conditions
- Measurements btw subjects uncorrelated
- Measurements w/in subjects correlated

Errors can now have ^N different variances and there can be correlations Allows for `nonsphericity'

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Repeated measures Anova

A little demo...