NeuroImaging Data Processing

aka. Statistical Parametric Mapping short course

Course 3:

General Linear Model, p.1

Christophe Phillips

Content

- **Introduction**
- **General Linear Model**
- **Parameter estimation**
- **Improved model**
- **Conclusion**

Content

- **Introduction**
- **General Linear Model**
- **Parameter estimation**
- **Improved model**
- **Conclusion**

SPM work flow

fMRI & BOLD signal

A simple fMRI experiment

Stimuli: passive word listening versus rest

BOLD response in the primary auditory cortex

6

Looking at 2 scans

Looking at 2 scans

ON-OFF, just one scan per condition

Simple *f*MRI example dataset

Voxel by voxel statistics

Voxel by voxel statistics

Content

- **Introduction**
- **General Linear Model**
- **Parameter estimation**
- **Improved model**
- **Conclusion**

Single voxel, two-sample t-test

Single voxel, regression model

Model as basis functions

Design matrix

General Linear Model

N: number of scans

Model is specified by

- 1. Design matrix **X**
- 2. Assumptions about ε

GLM & Mass univariate approach

The design matrix embodies all available knowledge about experimentally controlled factors and potential confounds.

Classical statistics

- parametric
	- one sample *t*-test
	- two sample *t*-test
	- paired *t*-test
	- Anova
	- AnCova
	- correlation
	- linear regression
	- multiple regression
	- *F*-tests
	- $-$ etc...

all cases of the **General Linear Model**

assume normality to account for serial correlations: Generalised Linear Model

• non-parametric?

 \rightarrow SnPM

Content

- **Introduction**
- **General Linear Model**
- **Parameter estimation**
- **Improved model**
- **Conclusion**

Parameter estimation

Geometric perspective on the GLM

Smallest errors (shortest error vector) when e is *orthogonal* to X

> $X^T e = 0$ X \prime $X\beta$ ˆ $X^T y = X^T$ \equiv $) = 0$ ˆ $X^T(y-X\hat{\beta}) =$ $(X^T X)^{-1} X^T y$ $\hat{B} = (X^T X)^{-1}$ $\beta =$

Design space defined by *X*

N data points \rightarrow N dimension space !

Content

- **Introduction**
- **General Linear Model**
- **Parameter estimation**
- **Improved model**
- **Conclusion**

Problems with fMRI time series

- 1. The *BOLD response* has a delayed and dispersed shape.
- 2. The BOLD signal includes substantial amounts of *low-frequency noise* (e.g. due to scanner drift).
- 3. Due to breathing, heartbeat & unmodeled neuronal activity, the *errors are serially correlated*. This violates the assumptions of the noise model in the GLM.

Problem 1: BOLD response

Hemodynamic response function (HRF):

Shift invariance

Time (sec)

40

Time (sec)

Solution for the BOLD response

Convolve stimulus function with a canonical hemodynamic response function (HRF):

Problem 2: Low frequency noise

- Physiological noise + scanner drift
- Aliased high frequency effects
- \Rightarrow Power in the low frequencies

Solution with high pass filtering

discrete cosine transform (DCT) set

Problem 3: Serial correlations

 $e \sim \mathcal{N}(0, \sigma^2 V)$

Solution for serial correlations

$$
y = X\beta + e \qquad e \sim \mathcal{N}(0, \sigma^2 V)
$$

Let $W^T W = V^{-1}$

Solution : Whitening the data BUT this requires an estimation of *V* \overline{V}

W

 $M^T V M$

Equivalent to the Weighted Least Square estimator

Multiple covariance components

enhanced noise model at voxel *i*

$$
e_i \sim N(0, C_i)
$$

$$
C_i = \sigma_i^2 V
$$

$$
V = \sum \lambda_j Q_j
$$

error covariance components Q and hyperparameters λ

Estimation of hyperparameters λ with ReML (Restricted Maximum Likelihood).

Restricted Maximum Likelihood

Estimation in SPM

- 2 passes (first pass for selection of voxels) • more accurate estimate of *V*
- Assume, at voxel *j*: $\ C_{\varepsilon,j} = \sigma_j V$

$$
t = \frac{c^T \theta}{\text{SE}(c^T \theta)} \qquad \text{SE}(c^T \theta) = \sqrt{\hat{\sigma}^2 c^T (V^{-1/2} X)^{-} (V^{-1/2} X)^{-} c}
$$

Limitations

The AR(1)+white noise model may not be enough for short TR (<1.5 s)

The flexibility of the ReML enables the use of any number of components of any shape

Content

- **Introduction**
- **General Linear Model**
- **Parameter estimation**
- **Improved model**
- **Conclusion**

A mass univariate approach

Summary

Mass univariate approach:

- Fit GLMs with
	- design matrix, X,
	- to data at different points in space
	- to estimate local effect sizes, β
- GLM, a very general approach that accommodates
	- Hemodynamic Response Function
	- Nuisance effects, e.g. high pass filtering
	- Error term covariance, e.g. temporal autocorrelation

Summary

noise assumptions: $\mathcal{E} {\sim} N(0, \sigma^2 V)$ **Pre-whitening:** $X_s = WX$ $y_s = Wy$ $\varepsilon_s = W\varepsilon$ UNI $\hat{\beta} = (X_s^T X_s)^{-1} X_s^T y_s$ $\hat{\beta}_1 = 3.9831$ $\hat{\beta}_{2-7} = \{0.6871, 1.9598, 1.3902, 166.1007, 76.4770, -64.8189\}$ $\pmb{\beta}$ $\hat{\beta}_8 = 131.0040$ = + $\widehat{\varepsilon_S}$ = $\hat{\sigma}^2 = \frac{\widehat{\varepsilon_S}^T \widehat{\varepsilon_S}}{N - n}$ $\hat{\beta} \sim N(\beta, \sigma^2 (X_s^T X_s)^{-1})$ $\overline{N-p}$ 38

Why modelling?

References

- Statistical parametric maps in functional imaging: a general linear approach, K.J. Friston et al, Human Brain Mapping, 1995.
- Analysis of fMRI time-series revisited again, K.J. Worsley and K.J. Friston, NeuroImage, 1995.
- The general linear model and fMRI: Does love last forever?, J.-B. Poline and M. Brett, NeuroImage, 2012.
- Linear systems analysis of the fMRI signal, G.M. Boynton et al, NeuroImage, 2012.

