NeuroImaging Data Processing

aka. Statistical Parametric Mapping short course

Course 3:

General Linear Model, p.1

Christophe Phillips

Content

- Introduction
- General Linear Model
- Parameter estimation
- Improved model
- Conclusion

Content

- Introduction
- General Linear Model
- Parameter estimation
- Improved model
- Conclusion

SPM work flow

fMRI & BOLD signal

A simple fMRI experiment

Stimuli: passive word listening versus rest

BOLD response in the primary auditory cortex

Looking at 2 scans

ON-OFF, just one scan per condition

Simple *f*MRI example dataset

Voxel by voxel statistics

Voxel by voxel statistics

Content

- Introduction
- General Linear Model
- Parameter estimation
- Improved model
- Conclusion

Single voxel, two-sample t-test

Single voxel, regression model

Model as basis functions

15

Design matrix

16

N: number of scans p: number of regressors Model is specified by

- 1. Design matrix ${f X}$
- 2. Assumptions about ε

GLM & Mass univariate approach

The design matrix embodies all available knowledge about experimentally controlled factors and potential confounds.

Classical statistics

- parametric
 - one sample *t*-test
 - two sample t-test
 - paired t-test
 - Anova
 - AnCova
 - correlation
 - linear regression
 - multiple regression
 - *F*-tests
 - etc...

all cases of the General Linear Model

assume normality to account for serial correlations: Generalised Linear Model

• non-parametric?

 \rightarrow SnPM

Content

- Introduction
- General Linear Model
- Parameter estimation
- Improved model
- Conclusion

Parameter estimation

Geometric perspective on the GLM

Design space defined by *X* Smallest errors (shortest error vector) when e is orthogonal to X

> $X^{T} e = 0$ $X^{T} (y - X\hat{\beta}) = 0$ $X^{T} y = X^{T} X\hat{\beta}$ $\hat{\beta} = (X^{T} X)^{-1} X^{T} y$

N data points \rightarrow N dimension space !

Content

- Introduction
- General Linear Model
- Parameter estimation
- Improved model
- Conclusion

Problems with fMRI time series

- 1. The **BOLD response** has a delayed and dispersed shape.
- The BOLD signal includes substantial amounts of *low-frequency noise* (e.g. due to scanner drift).
- 3. Due to breathing, heartbeat & unmodeled neuronal activity, the *errors are serially correlated*. This violates the assumptions of the noise model in the GLM.

Problem 1: BOLD response

Hemodynamic response function (HRF):

Shift invariance

Boynton et al, NeuroImage, 2012.

Solution for the BOLD response

Convolve stimulus function with a canonical hemodynamic response function (HRF):

Problem 2: Low frequency noise

- Physiological noise + scanner drift
- Aliased high frequency effects
- \Rightarrow Power in the low frequencies

Solution with high pass filtering

discrete cosine transform (DCT) set

Problem 3: Serial correlations

 $e \sim \mathcal{N}(0, \sigma^2 V)$

Solution for serial correlations

$$y = X\beta + e \quad e \sim \mathcal{N}(0, \sigma^2 V)$$

Let $W^T W = V^{-1}$

Solution : Whitening the data BUT this requires an estimation of V W

 $W^T V W$

Equivalent to the Weighted Least Square estimator

Multiple covariance components

enhanced noise model at voxel i

$$e_i \sim N(0, C_i)$$

$$C_i = \sigma_i^2 V$$
$$V = \sum \lambda_j Q_j$$

error covariance components Q and hyperparameters λ

Estimation of hyperparameters λ with ReML (Restricted Maximum Likelihood).

Restricted Maximum Likelihood

Estimation in SPM

t =

- 2 passes (first pass for selection of voxels)
 more accurate estimate of V
- Assume, at voxel *j*: $C_{\varepsilon,j} = \sigma_j V$

$$\frac{c^{T}\theta}{\operatorname{SE}(c^{T}\theta)} \qquad \operatorname{SE}(c^{T}\theta) = \sqrt{\hat{\sigma}^{2}c^{T}(V^{-1/2}X)^{-}(V^{-1/2}X)^{-}}c$$

Limitations

The AR(1)+white noise model may not be enough for short TR (<1.5 s)

The flexibility of the ReML enables the use of any number of components of any shape

Content

- Introduction
- General Linear Model
- Parameter estimation
- Improved model
- Conclusion

A mass univariate approach

Mass univariate approach:

- Fit GLMs with
 - design matrix, X,
 - to data at different points in space
 - to estimate local effect sizes, β
- GLM, a very general approach that accommodates
 - Hemodynamic Response Function
 - Nuisance effects, e.g. high pass filtering
 - Error term covariance, e.g. temporal autocorrelation

Summary

noise assumptions: $\varepsilon \sim N(0, \sigma^2 V)$ **Pre-whitening:** $X_s = WX \quad y_s = Wy \quad \varepsilon_s = W\varepsilon$ MMM $\hat{\beta} = (X_s^T X_s)^{-1} X_s^T y_s$ $\hat{\beta}_1 = 3.9831$ $\hat{\beta}_{2-7} = \{0.6871, 1.9598, 1.3902, 166.1007, 76.4770, -64.8189\}$ β $\hat{\beta}_8 = 131.0040$ $+\varepsilon$ $\widehat{\varepsilon_{s}} = \mathcal{M}_{\mathcal{M}} \mathcal{M}_{\mathcal{M}}$ $\hat{\sigma}^2 = \frac{\widehat{\varepsilon_s}^T \widehat{\varepsilon_s}}{\overline{\varepsilon_s}}$ $\hat{\beta} \sim N(\beta, \sigma^2 (X_s^T X_s)^{-1})$ 38

Why modelling?

: at [62, -28, 10]

References

- Statistical parametric maps in functional imaging: a general linear approach, K.J. Friston et al, Human Brain Mapping, 1995.
- Analysis of fMRI time-series revisited again, K.J. Worsley and K.J. Friston, NeuroImage, 1995.
- The general linear model and fMRI: Does love last forever?, J.-B. Poline and M. Brett, NeuroImage, 2012.
- Linear systems analysis of the fMRI signal, G.M. Boynton et al, NeuroImage, 2012.

