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Image registration

Most “spatial pre-processing” involves
aligning images together.

Two components:

e Registration —
i.e. Optimise the parameters that describe spatial
transformations between the images.

e Transformation -
i.e. Re-sample according to the determined
transformation parameters.



Label based techniques

e Homologous labels (points, lines, surfaces) in
the source and the reference images

= find transformations that best superpose them

e |Labels are identified (manually/semi-automatically)
= time consuming and subjective process
= few identifiable discrete points in the brain

e Lines and surfaces, e.g. contours, can be
extracted (semi-)automatically

e Best match = minimal distance
Question: how do you measure “distance”?



Label based techniques

e Homologous labels (points, lines, surfaces) in
the source and the reference images

= find transformations that best superpose them

o s B B i

Not so obvious in the brain!



Intensity based techniques

By minimizing a “distance” between the whole
source image and the whole reference image:

= Need a scalar measure (=distance) t0 optimize
= Depends on the image content...

Finding a best match = global optimum?
= but susceptible to poor starting estimates

Hybrid approaches :
1. label/manual, then
2. intensity based methods



Optimisation

e Image registration is done by optimisation.

e Optimisation involves finding some “best”
parameters according to an “objective
function” (to be either minimised or maximised)

_ _ Most probable solution
Objective } (global optimum)

function

Local optimum Local optimum

.

Value of parameter



Optimisation, multiple parameters

Contours of a two-dimensional

/ objective function “landscape”

No grid exploration at “high dimension” !
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Optimisation

Because registration
only finds a local
optimum, some
manual reorienting of
the images may be
needed before doing
anything else in SPM.

An MNI-space image
from spm12/canonical 7
directory.




2D Affine Transforms

e Translations by t, and t,

X, =
Y1

Xy =

Y1 =

X1=
Y1 =

Xg + T,

=Yy t+ &,

e Rotation around the origin
by ® radians

cos(®) X, + sin(®) y,
-sin(®) X, + cos(®) Y,

e Zooms by s, and s,:

Sx Xo
Sy Yo

Shear h,

X; = Xo + hy Yy

Y1 =

Yo

Same for hy
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2D Affine Transforms

e Translations by t, and t,

=1xy,+ 0y, +t,
y1=0x0+1y0+ty

e Rotation around the origin

by ® radians

X; = €0S(®) Xy, + sin(®) y, + 0
y; = -sin(®) X, + cos(®) y, + O

e Zooms by s, and s,:

Xy =S, Xog+0yy+0
Y1 =0Xy+5S,¥o + 0
Shear h,

Xy =1Xy +h,y,+0
Yi= 0Xx,+1 y,+0

Same for hy

13



2D Affine transform

e Operations can be represented by:
Xy = My1Xg + MypYg + My3
Y1 = My Xg + MyyYg + My

e ...Or as matrices:

Pi1 = M Po X1 mp; My My3 X0
Yi| = |M21 My M3 X | Yo
1 0 0 1 1

e Parallel lines remain parallel

Rigid-body transformations are a subset of
“affine transformation”
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3D Affine transform

e Operations can be represented by:
Xy = My Xg + MypYg + My3zZg + Myy
Y1 = My Xg + MyYg + My3Zg + Myy
Z; = M31Xg + M3yYg + M33Zp + M3y

e Or as matrices: x, || m, m, m, m, || x
P1 = M Po Yo o|o| My My My My 1Y
Z, m; m; m; Iy, Z,

1 | 0 0 1 || 1 ]

e Parallel lines remain parallel

Rigid-body transformations are a subset of
“affine transformation”
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Rigid-body transformations

e Assume that brain of the same subject
doesn’t change shape or size in the
scanner.

- Head can move, but remains the same shape
and size.

— Some exceptions:
e Image distortions.
e Brain slops about slightly because of gravity.
e Brain growth or atrophy over time.

o If the subject’'s head moves, we need to
“match” the images.
- Do this by image registration.
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3D Rigid-body Transform

e A 3D rigid body transform is an affine
transform defined by:
- 3 translations - in X, Y & Z directions
— 3 rotations - about X, Y & Z axes

1 0 0 Xtrans 1 0 0 0 cosqg 0 sing 0 cosQ sinQ 0 0
R=| 0 1 0 Yerans | 0 cosf sinf 0 g 0 1 0 0] -sinQ cosQ 0 0
0 0 1 Ztrans 0 -sin/f cos/ 0 -sing 0 cosg 0 0 0 1 0
0O 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
Translations Pitch Roll Yaw
about x axis about y axis about z axis

e The order of the operations matters!
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Voxel-to-world transformation

“Voxel-to-world transforms” =

Affine transform M associated with each
image such that

e Maps from voxels (x=[1...N,], y=[1...N,],
z=[1...N,]) to some world co-ordinate
system. e.qg.,

— Scanner co-ordinates - images from DICOM
toolbox

- T&T/MNI coordinates - spatially normalised

e World coordinates are (usuaiyy in millimetres!
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Image resampling

A continuous function is represented by a linear
combination of basis functions

1D interpolation

1

- 2D
interpolation
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Image resampling

f1

f2

e Nearest neighbour _ 4R i o
1/ ’ '\JA
- Take the value of |
the closest voxel : X2
- X1 pe =
e Tri-linear = = ,
— Just a weighted !
average of the
neighbouring voxels !
______________ o
_f5=f1X2+f2X1 ]
: 1
_f6=f3X2+f4X1 : !
-f=fsy, +fgy; 9 ® e

«J



Image resampling, example 1

s

-A‘&
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Image resampling, example 2

+++++

+++++

A+ +

Original Image

Binary (or index) image
— need to preserve property
— no need for smooth interpolation but...

Nearest Neighbor

Bilinear Interpolation
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Various registration problems

Same
contrast

Different
contrast

Rigid Image
body warping
1L .=
Brain Within Between

images subject | subjects

Within

modality

Between

modality
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Pre-processing overview

fMRI time-series Anatomical MRI

Motion (& distortion)
Correction

Coregister

l

o3 3 3
o 3 3 3

7~
o333
~ 333
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Various registration problems

Same
contrast

Different
contrast

Rigid Image
body warping
1L .=
Brain Within Between

images subject | subjects

Within X

modality

Between

modality
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Mean-squared difference

e Minimising mean-squared difference works for
intra-modal registration

c(I,J)=i(In—Jn)2

e Simple relationship between intensities in one
image, versus those in the other
(Assumes normally distributed differences, i.e. residuals)
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Within-subject registration

e Realign images I (fixed) and J (moving):
e Criteria to optimize: X
— c(1,9)=> (1,-3,)

e ¢c(I,J) depends on J's orientation, which
depends on R’s 6 parameters
— Optimize ¢(I,J) according to those 6 parameters !

1 0 0 Xtrans 1 0 0 0 cosqg 0 sing O cosQ2 sin2Q 0 O
r=| © 1 0 Yeans | 0 cos/f sinf 0 5 0 1 0 0 || -sinQ cosQ 0 0
0 0 1 Ztrans 0 -sinf cosf O -sing 0 cosg O 0 0 1 0
0 0 0 1 0o 0 0o 1 0O 0 o0 1 0 0 o0 1
———
Objective |
function

Value of parameter A
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Residual errors from aligned fMRI

Re-sampling can introduce interpolation errors
— tri-linear interpolation ~ smoothing

Gaps between slices can cause aliasing artefacts

Slices are not acquired simultaneously
— rapid movements not accounted for by rigid body model

Image artefacts may not move according to a
rigid body model

— image distortion, image dropout, Nyquist ghost
BOLD signal changes influence the estimated
motion.

= Functions of the estimated motion parameters

can be modelled as confounds in subsequent

analyses
30



EPI distortion

e Magnetic susceptibility
differs among tissues.

e Greatest difference is

between air and tissue.

e Subject disrupts B,
field, rendering it
inhomogeneous

e Distortions in phase-
encode direction

Fieldmap in Hz

Warped EPI
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FieldMap toolbox

o Computes a Voxel_ SN Ccicliate VDM <-X BB

displacement map
(VDM) from
“fieldmap” scans.

e Used to correct
distortions in EPI.

File Edit Wiew SPM
3 ,y N
Dl P

Module List

Basicl0

Current Module: Calculate VDM

Help on: Calculate VDM
Data

. Subject
.. Field map
... Real and Imaginary Data
... Short Echo Real Image
.. .. Short Echo Imaginary Image
... Long Echo Real Image
... Long Echo Imaginary Image
.. FieldMap defaults
... Defaults File
.. EPI Sessions
... Session
... Select EPI to Unwarp
... Session
... Select EPFI to Unwarp
.. Match WDM to ERI?
.. WDM filename extension
. Write unwarped EPI?

. Anatomical image for comparison

‘ . Match anatomical image to EPI?

...ox/FieldMap/pm defaults.m

<-X

=-X

<X

session

write unwarped EPI
0 files

=-X

4]

-
Calculate VDM
This branch contains 1 items:
- * Data

Generate unwrapped field maps which are conwverted to voxel displacerment maps (WVDM) that
can be used to unwarp geometrically distorted EPI images.
The resulting VDM files are saved with the prefix vdm and can be applied to images using Apply
VDM or in combination with Realign & Unwarp to calculate and correct for the combined effects
of static and movement-related susceptibility induced distortions.

4]




Phase unwrapping

e Phase of complex
data used.

e -1 < phase <=

e Phase-unwrapping
needed.

e Phase is poorly
defined when
magnitude is small
relative to noise

=>» Part that is most
likely to go wrong.

Complex plane

/‘

Imaginary
=]

1 1 L | L 1
20 40 60 80 100 120




Movement-by-distortion interaction

Original position After rotation
- - "

4

I

Original position After rotation
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Correcting for distortion changes

r

Estimate
movement
parameters.

)

Estimate reference from
mean of all scans.

1 |

Estimate new distortion
fields for each image:

e estimate rate of change
of field with respect to
the current estimate of
movement parameters
in pitch and roll.

: 2
~ —
A(p ‘+AE
0 K

0B, /0¢p  oB,/00

'of

Unwarp time
series.

J

Andersson et al, 20013°



Various registration problems

Same
contrast

Different
contrast

Rigid Image
body warping
1L .=
Brain Within Between

images subject | subjects

Within

modality 2

Between X

modality
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“Coregistration”

e Inter-modal registration.

e Match images from same
subject but different
modalities:

— anatomical localisation of
single subject activations

— achieve more precise spatial
normalisation of functional
image using anatomical
image.




Joint histogram & Mutual information

50 100 150 200

50 100 150 200




Mutual Information, real case

QOriginal Joint Histogram Final Joini Histogram

T2 weighted

T2 weighted

™

i

| == I“’

T1 weighted T1 weighted

e Used for between-modality registration
e Derived from joint histograms

e MI= [, P(a,b) log, [P(a,b)/( P(a) P(b) )]
- Related to entropy: MI = -H(a,b) + H(a) + H(b)
Where H(a) = —,[a P(a) log,P(a) and H(a,b) = —_[ab P(a,b) log,P(a,b)



Within-subject registration

e Realign images I (fixed) and J (moving):
e Criteria to optimize:
— ¢(1,J)=MI(l,J)

e ¢c(I,J) depends on J's orientation, which
depends on R’s 6 parameters
— Optimize ¢(I,J) according to those 6 parameters !

1 0 0 Xtrans 1 0 0 0 cosqg 0 sing O cosQ2 sin2Q 0 O
r=| © 1 0 Yeans | 0 cos/f sinf 0 5 0 1 0 0 || -sinQ cosQ 0 0
0 0 1 Ztrans 0 -sinf cosf O -sing 0 cosg O 0 0 1 0
0 0 O 1 0 0 0 1 0 0 0 1 0 0 0 1
Objective
function
R Mo,

Value of 1 parameter 41



“"CheckReg” to assess alignment

CheckReg allows
contours from one
image to be shown

superimposed on
another

42



EPI dropout and distortion




Voxel-to-world transformation

“Voxel-to-world transforms” =

Affine transform M associated with each
image such that

e Maps from voxels (x=[1...N,], y=[1...N,],
z=[1...N,]) to some world co-ordinate
system. e.qg.,

— Scanner co-ordinates - images from DICOM
toolbox

- T&T/MNI coordinates - spatially normalised

e World coordinates are (usuaiyy in millimetres!
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Voxel-to-world transformation

e Registering image B (source) to image A
(target) will update B’s voxel-to-world

mapping.
M

Img A: vx: ———mm §
R

Img B: vx: L mm

e Mapping from voxels in B to voxels in A is
by combining Mgz and R: M*; = Mz R
- B-to-world using M*;, then world-to-A using
Myl = M*; Myt

45



Various registration problems

Same
contrast

Different
contrast

Rigid Image
body warping
1L .=
Brain Within Between
images subject | subjects
Within
modality 2 A
Between X

modality
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Content

e Preliminaries
e Within-subject

e Between-subject

Unified segmentation for spatial normalisation
— Gaussian mixture model

— Intensity non-uniformity correction

- Deformed tissue probability maps

e Smoothing

e Conclusion
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Pre-processing overview

fMRI time-series Anatomical MRI Template

Estimate
Spatial
Normalization

Motion (& distortion)
Correction

l

Coregister

l

Mia Mz Mz Mha

M2i M2z M2z Meaa
Ma1 Ms2 Mss  Maa
0 0 0 1

\ Defo rmatiaﬁm

!

Statistics or
whatever

T

Smoothed

Smooth

1 <>

Spatially
normalised

vy
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Between subjects

Brains of different subjects vary in shape
and size.

49



Between subjects




Between subjects

Brains of different subjects vary in shape
and size.

- Need to bring them all into a common

anatomical space.
— Examine homologous regions across subjects

e Improve anatomical specificity
e Improve sensitivity

— Report findings in a common anatomical space
(e.g. MNI space)

51



T&T atlas vs MNI template

The Talairach & Tournoux Atlas The MNI/ICBM AVG152 Template

-
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1

k}

Dt

4

-

) 5 4 4 2 1 a 1 - 3 1 5
bl obebe bt bt bbb bt bl bl

The MNI template follows the convention of T&T, but does NOT match
the particular brain

Recommended reading: http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
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http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach

Between subjects

e Brains of different subjects vary in shape and
size.

- Need to bring them all into a common
anatomical space.

— Examine homologous regions across subjects
e Improve anatomical specificity
e Improve sensitivity

— Report findings in a common anatomical space
(e.g. MNI space)

e In SPM12, alignment is achieved by matching
tissue classes, i.e. GM with GM, WM with WM, ...

53



Normalise/Segment

e This is the same
algorithm as for tissue
segmentation.

e Combines:

— Mixture of Gaussians
(MOG)

— Bias Correction
Component

— Warping (Non-linear
Registration) Component

Fealign (Esti... =

Mormalise (... =

Coregister (... -

==

Basic models

Feviaw

Estimate

Bayesian

Fesults

Errizmle Sz plaelz] e

Display | Check Reg Render... ... "| PET '|
Toolbox:  ~| PPIs I Calc DICOM Import
Help | Utils.. Y Batch Quit
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Spatial normalisation

e Default spatial
normalisation in
SPM12 estimates
nonlinear warps that
match tissue
probability maps to the
individual image.

e Spatial normalisation
achieved using the
inverse of this
transform.




Segmentation

e Segmentation in SPM12
also estimates a spatial
transformation that can
be used for spatially
normalising images.

e [t uses a generative
model, which involves:

— Mixture of Gaussians
(MOG)

— Warping (Non-linear
Registration) Component

— Bias Correction
Component




Tissue intensity distributions (T1w-MRI)

0.04 T T T T T T | I I
Grey Matter
White Matter
0.035 | CSF B
Bone
Soft Tissue
0.03 [ Air/Background ||
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|
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TPM’s

Tissue probability
maps in SPM12.

e GM, WM & CSF

e Additional non-
brain tissue
classes

= define the
template space !

C Y YOD|e2 2




Modelling deformations, affine transform

12 parameter affine transform

— 3 translations
— 3 rotations

— 3 zooms

— 3 shears

X
A
Z,
1

=

11

= Fits overall shape and size

= Need warping for local

deformation

=

14 X

24 Yo

=

=

34 Z,

/ = - s
1 Ld
] e
) Soooooooood ! L. 59
rd



Spatial normalisation results

Affine registration
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Modelling elastic deformations, “warps”

« Tissue probability
Images are warped
to match the
subject

Pl
L
&

K SN

il
n el
'l-'. .

g
0

i 5,-‘
|
L

* The inverse
transform warps to
the TPMs

« Warps are constrained
to be reasonable by
penalising extreme
distortions (bending
energy)




Non-linear warping, example

Go to original image
and find intensity at
warped co-ordinate

]

For every voxel
position in blank
sheet =

Wik
= +
Y y ]| d&xy) |

Get position in
original space by
adding pertinent

displacement

- . - s =~ ~ o F T .

T N A AR

L.,h&‘x\,_\mx

A ,/’/’/,
P -
PNy T T

o

| -

N

\\\\\\\\\

‘‘‘‘‘‘‘‘‘

Target
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Non-linear warping, example

For each voxel-centre in

blank sheet.

Go to original image
and find intensity at
“warped” co-ordinate

Get position In
original space
by adding
pertinent
displacement.

e v g e e
- VA e ==
' \«\\&:f/ff‘\
”””” RS O A
’’’’’ ALV YA T T —
NN R N A
:fiﬂ‘*JJdél\\“‘“ <
. RN EEEERERE ol
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NS MY
NS R RS . ¥
R \,__‘HH_,;'\\Q
L T - ,_‘__5‘__}_43/’?\
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Displacement map

VA f e
R N P P et
' TR T S A O
R N N R I I -
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y-displacement,

black: downward
translation

white: upward
translation

grey: no translation

x-displacement,
black: leftward
translation
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translation
gray: no translatio
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Displacement map modelling

e To prevent
impossible . H ! o E
deformations we
restrict it to be a
linear combination ] ! g e E
of permitted basis-

warps. | IV =

e For example use
the discrete cosine ¢
set = smooth

R T
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Displacement maps, example

Square-to-ellipse map

= =~ r 7 F v . . < =

- w A
I SN R
Each basis-warp multiplied by a weight T
N

LU —
DB R EEEE oo
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Displacement maps, example

shift laft, Light - shiftright Field Applied To Image

[ B

shiftdown, Light - shiffup Deformation Fiek in Y Daformad Image

“

SNOAD
SROWN
SWuOMI



Modelling deformations, warps

« Tissue probability
Images are warped
to match the
subject

* The inverse
transform warps to
the TPMs

Warps are constrained
to be reasonable by
penalising various
distortions (energies)




Spatial normalisation results

Affine registration Non-linear registration
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Modelling inhomogeneity

A multiplicative bias field is modelled
as a spatially smooth image

.

Corrupted image Bias Field Corrected image




Normalisation & Unified Segmentation

e MRI imperfections make normalisation harder
— Differences between sequences, artefacts
— Intensity inhomogeneity or “bias” field

e Normalising segmented tissue maps should be
more robust and precise than using the original
iImages ...

e ... Tissue segmentation benefits from spatially-

aligned prior tissue probability maps (from other
segmentations)

- Circular reasoning!

/1



Iterative optimisation scheme

Update deformation
estimates

No

T1lw-MRI

\

Update tissue
estimates

Converged?

XYes

N

Update bias field
estimates

Tissue class images + warping
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Segmentation results

Tissue
probability
maps of
GM and
WM

Spatially
normalised
BrainWeb
phantoms
(T1, T2,
PD)

73



Tissue intensity distributions (T1w-MRI)
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Mixture of Gaussians (MoG)

Classification is based on a Mixture of Gaussians
model (MOG), which represents the intensity

probability density by a number of Gaussian
distributions.

T

Frequency

Image Intensity ——

/75



Gaussian probability density

If intensities are assumed to be Gaussian of
mean p, and variance %, then the
probability of a value vy; is:

P(y.-luk,qf)i/z%qfex —(y‘_”k)j

)

F’(yi'uuk,c
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Non-Gaussian probability density

A non-Gaussian probability density function
can be modelled by a Mixture of Gaussians
(MOG):

P(Yi | “'02'7): >t Vi \/ZjTiq,zex ) ¢ Z_Q?k)zj
[

Mixing proportion - positive and sums to one

)

Ply jwo
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Mixing proportions

e The mixing proportion y, represents the
prior probability of a voxel being drawn
from class k - irrespective of its intensity.

P(Ci=k|y)=yk

e SO:

P(Yl I H,0 ,Y) Zk IP(YHC _ k IM: IY)
K
= lEP(Q =k | y)P(yle =k.u,0%)
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Probability of whole image

o If the voxels are assumed to be
independent, then the probability of the
whole image is the product of the
probabilities of each voxel:

(Yllvl: ) H.1 (YIIM' )

o It is often easier to work with negative
log-probabilities:

- IOdP(Y |1, GZ,Y)) = _Z'I=1IOJP(Yi Ju szy))
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Modelling a bias field

e A bias field is included, such that the
required scaling at voxel i, parameterised

by BI IS pi(B)'

e Replace the means by p,/p(B)
e Replace the variances by (c,/pi(B))?2

2 1 (Yi_“k/pi(ﬁ))Z]
P(y. | ¢ =k,u,o°,B) = N °
il =kp.omp) J2n(o,/p,(B)Y exp[ 2o/ pi(B))
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Modelling a bias field

After rearranging:

P(y, | ¢, =k,u,6°,B) =

(R AR RN
ll LALLLL L

F— ERAENLN

l l lllllllll

-

x'e Hlllllll
W s i ananing
—- '

e e e O
L

-8 e N,

-' '.’"'

p(B)

\ /27'CGk

Yipi(B) — Hk)

ex;{—(
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“Mixing proportions”

e Tissue probability
maps for each class
are included.

e The probability of
obtaining class Kk at
voxel I, given
weights y is then:

b,
Ple,=klv) =
Z?ﬂhbu




TPMs deformation

e Tissue probability
images are
deformed
according to

parameters a.

e The probability of
obtaining class k
at voxel I, given
weights y and
parameters o is

then: v.b. (o)
P — k : — k ™~k
(C| | Y (1) JK:1'ijij ((1) o3




The extended US model

e By combining the modified P(c;=k|0) and
P(y.|c;=k,0), the overall objective
function (E) becomes:

€ -~ log[P(y|6)] = ~3:log| >P(c, = k|6)P(yc, = k.0)|

The Objective Function
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Optimisation

e The "best” parameters are those that
minimise this objective function.

e Optimisation involves finding them.

e Begin with starting estimates, and
repeatedly change them so that the
objective function decreases each time.

I
E-= —glog

_pi@

£ (b

1
EINIE) N ONCLES

exp[

_ (pi®Yi _®)Z

J_
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Optimisation strategy

Repeat until convergence...

- Hold y, p, o2 and a constant, and minimise E

w.r.t. 3
Levenberg-Marquardt strategy, using dE/dB and d?E/dp?

- Hold y, p, o2 and B constant, and minimise E
w.r.t. a
Levenberg-Marquardt strategy, using dE/da and d2E/da?

— Hold a and B constant, and minimise E w.r.t. v,

n and o?
Use an Expectation Maximisation (EM) strategy.

end
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Spatial normalisation, overfitting

Without regularisation, the non-linear spatial
normalisation can introduce unnecessary
warps.

Non-linear Non-linear
registration registration
Template Affine without using

image registration. regularisation. regularisation.




Linear regularisation

e Some bias fields and distortions are more
probable (a priori) than others.

e Encoded using Bayes rule:

~log[P(6,y)]= —log[P(y|6)]—-log[P(6)]

e Prior probability distributions can be
modelled by a multivariate normal
distribution.

— Mean vector 1, and py
— Covariance matrix X, and X,
- -log[P(a)] = (a-m,)’S_,(a-m,) + const
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Old fashioned template matching

Minimise mean squared difference from
image to template image(s)

Template Images

Spatial normalisation can be
weighted so that non-brain voxels
do not influence the result.

Similar weighting masks can be
used for normalising lesioned
brains.
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Old fashioned template matching

Determine the spatial
transformation that
minimises the sum of
squared difference
between an image and a
linear combination of one
or more templates.

Begins with an affine
registration to match the
size and position of the
image.

Followed by a global non-
linear warping to match
the overall brain shape.

Uses a Bayesian
framework to
simultaneously minimize
the bending energies of
the warps.




Content

e Preliminaries

Within-subject
Between-subject
Smoothing

Conclusion
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Smoothing, principle

e Smoothing is done by convolution.

e Each voxel after smoothing
effectively becomes the result of
applying a weighted region of
interest (ROI).

e Gaussian function, defined by its “full
width at half maximum” (FWHM)

Before convolution Convolved with a circle

F 5
P
1° ,

2D Gausgfan
function

Convolved with a

Gaussian

-
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Smoothing, why blur the data?

Improves spatial overlap by blurring over minor
anatomical differences and registration errors

Averaging neighbouring voxels suppresses noise
(matched filter theorem)

Makes data more normally distributed (central limit
theorem)

Reduces the effective number of multiple
comparisons

Gaussian convolution is separable
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Smoothing, kernel size

Decide a priori, based on:
e Population, i.e. noise & inter-subject variability
e Expected activation size
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e Expected activation size
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Pre-processing overview

fMRI time-series Anatomical MRI Template

Estimate
Spatial Norm

Motion/Distortion
Correct

|

Coregister

l

Mia Mz Mz Mha

M2i M2z M2z Meaa
Ma1 Ms2 Mss  Maa
0 0 0 1

X Defo rmatiaﬁw

!

Statistics or
whatever

T

Smoothed

Smooth

1 <>

Spatially
normalised

vy
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Alternative pipeline

fMRI time-series

Motion/Distortion
Corre_ct

Template

Estimate
Spatial Norm

|

Deformation

!

Statistics or
whatever

T

Smoothed

Smooth

1 <>

Spatially
normalised
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