
INTRODUCTION TO ALGORITHMS

GIGA Doctoral School
Introduction to Scientific Computing

▶ Introduction

▶ Types of algorithms

▶ Classification of algorithms

▶ Expressing algorithms

▶ Constructs of an algorithm

▶ The concept of sub-algorithm

▶ Examples

▶ Algorithm complexity

Outline

Definition:

▶ An algorithm is step-by-step procedure with the aim of solving a problem.

▶ Algorithms are often used in many real life problems

▶ In computer science, an algorithm has a special meaning. It is defined to have these features:

- An algorithm must have some data to operate on it

- It must produce at least one result

- It must terminate after a finite numbers of steps

Introduction

History:

▶ History of algorithms can be traced back to the ancient Greeks

▶ An efficient method for finding the Greatest Common Divisor was proposed by Euclid

▶ Study of algorithm was done by Mohammed ibn mussa al-Khowarizmi

Introduction

The types of algorithms depends on the type of task to be solved.

 Searching

• Designed to search for a given item in large data set

 Sorting

• Used to arrange data items in ascending or descending order

 Compression

• Meant to reduce the size of data and program files

• Commonly used for compression of images, audio and video data

Types of Algorithms

Types of Algorithms

 Fast Fourier Transforms

• Used in Digital Signal Processing (DSP)

 Encoding

• Used for encryption of data

 Geometric

• Used for identification of geometric shapes

 Pattern Matching

• Comparing images and shapes

Classification of Algorithms

Depending on the strategy used for solving a particular problem, algorithms are

classified as follows:

 Divide-and-Conquer Algorithms

o A given problem is fragmented into sub-problems which are solved partially

o The algorithm is stopped when further sub-division cannot be performed

o These algorithms are frequently used in searching and sorting problems

Classification of Algorithms

 Iterative Algorithms

o Certain steps are repeated in loops, until the

goal is achieved

o An example of an iterative algorithm is sorting

an array

 Greedy Algorithms

o In a Greedy algorithm an immediately available

best solution at each step is chosen

o Useful for solving graph theory

A

B
15

2

10

7

10 3

8

3

Classification of Algorithms

 Back-Tracking Algorithms

o In back tracking algorithms, all possible

solutions are explored until the end is reached,

afterwards the steps are traced back

o These are useful in graph theory.

o Back tracking algorithms are used frequently

for traversing trees

A

B
15

2

10

7

10 3

8

3

Expressing Algorithms

 Describing algorithms requires a notation for expressing a sequence of steps to be performed.

 Algorithms can be expressed in many kinds of notation, including natural languages, pseudocode, flowcharts

Natural Language

 English words and sentences can be used to express statements and processing steps

• For example, words like read, write, compute and set can be used for Input-Output operations, computations and assigning

values to variables.

• Comparison operations are expressed as equal to, less than, greater than

• Arithmetical operations are expressed using words like add, subtract, divide and multiply

• Control structures are expressed using sentences like repeat for, while, if, halt, exit

 Example: Find the largest element in a list/array of five integers.

6 15 9 25 3

6 15 9 25 3

6 15 9 25 3

6 15 9 25 3

6 15 9 25 3

6 15 9 25 3

Step 1

Step 2

Step 3

Step 4

Step 5

6

15

15

25

25

Largest

25

Output result Input List

FindTheLargest

What you would do?

Step 1: Set Largest to the first number.

Step 2: If the second number is greater than Largest, set Largest to the second number.

Step 3: If the third number is greater than Largest, set Largest to the third number

Step 4: If the fourth number is greater than Largest, set Largest to the fourth number

Step 5: If the fifth number is greater than Largest, set Largest to the fifth number

6 15 9 25 3 25

Output result Input List

FindTheLargest

What does it mean in natural language?

Could you express it in a more simple way?

Step 0: Set Largest to 0

Step 1: If the current number is greater than Largest, set Largest to the current number.

…

…

Step 5: If the current number is greater than Largest, set Largest to the current number

6 15 9 25 3 25

Output result Input List

FindTheLargest

Set Largest to 0.

If the current number is greater than Largest, set Largest to the current number.

Repeat the following N times: Output result Input List

FindTheLargest

Input/read: list of N integers

Set Largest to 0

Repeat the following N times

If the current number is greater than Largest, Set Largest to the current number

Output Largest

End

Expressing Algorithms

Input/read: list of N integers

Set Largest to 0

Repeat the following N times

If the current number is greater than Largest,

 Set Largest to the current number

Output Largest

End

Use of Pseudocode

 Algorithms in natural language tend to be wordy

and verbose

 Pseudocode provides an alternative way of

expressing algorithms

 It is a mixture of natural language and

programming notation

 In practice several conventions are used to write

pseudocode

Expressing Algorithms

Use of Pseudocode

• Algorithm is identified by a name

• Comments are enclosed in square brackets

• Assignment statement is coded using left arrow

• Operators : (+, -, *, /, <, >, =, !=)

• Input and Output : read and write

• Control Structures : if-then, if-then-else

• Repetitive operations : Repeat, for, while, until

 FindTheLargest

 Input: A list of positive integers

1. Set Largest to 0

2. while (more integers)

3. if (the current integer is greater than Largest)

4. then

5. Set Largest to the value of the current integer

6. end if

7. End while

8. Return Largest

9. End

Flowchart Rules:

1. Flowchart is generally drawn from

top to bottom
2. All boxes of flowchart must be

connected
3. All flowchart start with terminal or

process symbol
4. Decision symbol have 2 exit points,

one for YES (TRUE) and another for
NO (FALSE)

More
numbers

Add current
number to sum

no

Yes

Set sum to 0

Return sum

start/stop

input/output

decision making

process

predefined process

loop

connector

flow direction

Expressing Algorithms

Flowchart

Constructs of an algorithm

do action 1
do action 2
…
…
…
do action n

if a condition is true.

Then

 do a series of actions

Else

 do a series of actions

While a condition is true.

do action 2
…
…
…
do action n

Sequence

Decision

Repetition

 FindTheLargest

 Input: A list of positive integers

1. Set Largest to 0

2. while (more integers)

3. if (the current integer is greater than Largest)

4. then

5. Set Largest to the value of the current integer

6. end if

7. End while

8. Return Largest

9. End

action 1

action 2

…

…

…

action n

If (condition)
 then
 action
 action
 …
 else
 action
 action
 …
End if

While (condition)

 action

 action

 …

End while

Sequence Decision Repetition

Constructs & pseudocode

Constructs of an algorithm

start/stop

input/output

decision making

process

predefined process

loop

connector

flow direction

Action n

Action 2

Action 1

A sequence of
actions

Another sequence
of actions

False True Test
While

condition

A sequence of
actions

False

True

Sequence Decision Repetition

Constructs & Flowcharts

Constructs of an algorithm

The concept of sub-algorithm

 FindTheLargest

 Input: A list of positive integers

1. Set Largest to 0

2. while (more integers)

 End while

3. Return Largest

 End

2.1 FindLarger

FindLarger

Input: Largest and integer

 if (integer greater than Largest)

 then

 1.1 Set Largest to the value of the integer

 End if

End

Examples of algorithms

 Summation

 Input: A list of integers

1. Set Sum to 0

2. While(more integers)

2.1. Add current number to sum

 End of while

3. Return Sum

 End

 Multiplication

 Input: A list of integers

1. Set product to 1

2. While(more integers)

2.1. Multiply current number by product

 End of while

3. Return product

 End

More
numbers

Add current
number to sum

no

Yes

Set sum to 0

Return sum

Summation/Multiplication

Pseudocode
Flowchart

Pseudocode

 Given a list, put it into some order

 Numerical, lexicographic, etc.

 Input: sequence (a1, a2,…, an) of numbers.

 Output: permutation (a’1, a’2, …, a’n) such

 that a’1 ≤ a’2, ≤ … ≤ a’n.

 Example:

 Input: 8 2 4 9 3 6

 Output: 2 3 4 6 8 9

 We will introduce three types

 Selection sort

 Bubble sort

 Insertion sort

 Given a list, put it into some order

 Input: sequence (a1, a2,…, an) of numbers.

 Output: permutation (a’1, a’2, …, a’n) such

 that a’1 ≤ a’2, ≤ … ≤ a’n.

 We will see three types

 Insertion sort

 Selection sort

 Bubble sort

6 15 9 25 3

Sorting algorithms

Examples of algorithms

3 6 9 15 25

Original List

Sorted List

Wall

Sorted unsorted

1 n

▶ It starts with a list with one element, and inserts new elements into their proper place in the

sorted part of the list.

Insertion-Sort

Sorting algorithms

Examples of algorithms

Original List

Sorted unsorted
15 9 25 3 6

9 25 3 15 6

25 3 15 9

3 25 15 9

25 15 9 6

After pass 1

After pass 2

After pass 3

After pass 4

6

6

3

Insertion-Sort

Sorting algorithms

Examples of algorithms

While there are more elements
In the unsorted list

Find where the current element
should be in the sorted portion

of the list

False

True

Place the wall after the
First element of the list

Start

Move all elements in the sorted
portion of the list that are greater

than the current element up by
one

Put the current element into it’s
proper place in the sorted

portion of the list

Stop

 Insertion-Sort

 Input: A list of integers (a1, a2,…, an)

1. for j = 2 to A.length

2. value = A[j]

3. Insert A[j] into the sorted sequence A[1 . . j-1]

4. i = j-1

5. While(i > 0 and A[i] > value)

6. A[i+1] = A[i]

7. i = i -1

8. End of while

9. A[i+1] = value

10. End of for

 End (a’1, a’2, …, a’n) are sorted

Sorting algorithms

Examples of algorithms
Pseudocode

Flowchart

Swap (smallest element with the element in the right
of the wall

Wall

Sorted unsorted

1 n

▶ Find the smallest element in the unsorted list and swap it with the first element of

the unsorted list.

Selection-Sort

Sorting algorithms

Examples of algorithms

Original List 6 15 9 25 3

9 25 15 6 3

25 15 9 6 3

25 15 6 3

After pass 1

After pass 2

After pass 3

After pass 4

15 9 25 6 3

9

Insertion-Sort

Sorting algorithms

Examples of algorithms

Sorting algorithms
Selection-Sort

 Selection-Sort

 Input: A list of integers (a1, a2,…, an)

1. for i = 1 to A.length -1

2. min = i

3. /* check the element to be minimum */

4. for j = i+1 to A.length

5. if A[j] > A[min] then

6. Min = j

7. end if

8. end for

9. /* swap the minimum element with the current element */

10 . If indexMin != i then

11. swap A[min] and A[i]

12. end if

13. End for

 End (a’1, a’2, …, a’n) are sorted

While there are more elements
In the unsorted list

Find smallest element in
unsorted list.

This can be done in a sub-
algorithm and involves a loop

False

True

Place the wall at the
beginning of the list

Start

Swap the smallest element with
the first element of the

unsorted list

Move the wall one element to
the right

Stop

Pseudocode

Flowchart

Wall

1 n

▶ One of the least efficient algorithms

▶ It takes successive elements and « bubbles » them up/down in the list.

sorted unsorted

Bubble up

Bubble-Sort

Sorting algorithms

Examples of algorithms

Original List 6 15 9 25 3

9 15 25 6 3

15 25 9 6 3

25 15 6 3

After pass 1

After pass 2

After pass 3

After pass 4

6 15 9 25 3

9

Bubble-Sort

Sorting algorithms

Examples of algorithms

 Bubble-Sort

 Input: A list of integers (a1, a2,…, an)

1. for i = 1 to A.length

2. swapped = false

3. for j = 1 to A.length

4. [compare the adjacent elements]

5. if A[j] > A[j+1] then

6. [swap them]

7. swap(A[j], A[j+1])

8. swapped = true

Sorting algorithms

Examples of algorithms

9. end if

10. end for

11. [if no number was swapped that means

12. list is sorted now, break the loop.]

13. if(not swapped) then

14. break

15. end if

16 End for

17. End (a’1, a’2, …, a’n) are sorted

Pseudocode

▶ Given a list, find a specific element in the list

▶ We will see two types

- Linear search (sequential search)

- Binary search

4 21 36 14 62 8 15 9 25 3

Location wanted

Target given (62)

Searching algorithms

Examples of algorithms

4 21 36 14 62 91 8 22 7 81 77 10

Location wanted
(4)

position

4 21 36 14 62 91 8 22 7 81 77 10

4 21 36 14 62 91 8 22 7 81 77 10

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

Target given
(62)

62 != 4

62 != 21

62 == 62

0

position

1

position

4

Linear search running time

• How long does this take?

• If the list has n elements , worst case

 scenario is that it takes n « steps »

• Here, a step is considered a single

 step through the list

.

.

.

Searching algorithms

Examples of algorithms
Linear search

4 7 8 10 14 21 22 36 62 77 81 91

first

0 1 2 3 4 5 6 7 8 9 10 11

22 > 21

0 5 11

Binary search = List MUST be sorted!
mid last

first

6 8 11

mid last

4 7 8 10 14 21 22 36 62 77 81 91

0 1 2 3 4 5 6 7 8 9 10 11

4 7 8 10 14 21 22 36 62 77 81 91

0 1 2 3 4 5 6 7 8 9 10 11

22 < 62 first

6 6 7

mid last

22 == 22

Binary search running time

• How long does this take (worst case)?

• If the list has 8 elements

• It takes 3 steps

• If the list has 16 elements

• It takes 4 steps

• If the list has 64 elements

• It takes 6 steps

• If the list has n elements

• It takes log2(n) steps

Target given
(22)

Searching algorithms

Examples of algorithms

Algorithm complexity

Space complexity

 How much space is required?

Time complexity

 How much time does it take to run algorithm?

Often, we deal with estimates!

Algorithm complexity

Space complexity

 Space complexity S(p) of an algorithm is the total space in memory taken by the algorithm to complete its execution

with respect to the input size

S(p) = CONSTANT SPACE + AUXILARY SPACE

Constant space : is the space fixed for that algorithm, generally equals to space used by input and local variables

Auxiliary space : is the extra/temporary space used by an algorithm

ONLY THE AUXILIARY PART SHOULD BE CONSIDERED

S(p) = C + S(auxiliary) = S(auxiliary)

Algorithm complexity

 Summation

Input: a, b, c

 return a + b + c

End

S(p) = 1 + 1 +1 = 3  No Auxilary

 Summation

Input (a, n)

Sum = 0

for i in range (n)

 sum = sum + a[i]

end for

return Sum

End

S(p) = (n*1 + 1 +1) + 1 = n + 1  Auxilay = 1

Space complexity

Algorithm complexity

Time complexity

 Time complexity of an algorithm signifies the total time required by the program to run till its completion.

The time complexity of algorithms is most commonly expressed using the Big O notation.

Big O notation gives an uper bound of the complexity in the worst case, helping to quantify performance as the

input size becomes arbitrarily large.

We analyze time complexity only for :

a) Very large input-size

b) Worst case scenario

Algorithm complexity

 Big O notation

n: the size of the input

Complexities ordered from smallest

 to largest

 Constant Time: O(1)

 Linear Time: O(n)

 Quadratic Time: O(n2)

 Cubic Time: O(n3)

Time complexity

Time complexity

 Big O properties:

T(n) is a function describing the running time of

a particular algorithm for an input of size n:

T(n) = n3 + 3n2 + 4n + 7

T(n) ≈ n3 (n  ∞)

 ≈ c n3 = O(n3)

Rule 1:

a) Lower order terms should not be considered

b) Constant multiplier should not be considered

Example: T(n) = 17 n4 + 3 + 4n + 8 = O(n4)

Algorithm complexity

Time complexity

 Big O properties:

Rule: Running Time = ∑ Running Time of all fragments

n = length of your list

for i = 0 to n

 //simple statements

end of for

Simple loop

Fragment 2

O(n)

int a;

a = 5

a+1;

Simple statements

Fragment 1

O(1)

n = length of your list

for i = 0 to n

 for j = 0 to n

 //simple statements

 end of for

end of for

nested loop

Fragment 3

O(n2)

Algorithm complexity

Time complexity

function
int a;
a = 5;
a+1;
If (some condition)
 for (i = 0 to n
 // simple statements
 end of for
else
 for (i = 0 ; i<n ; i++)
 for (j = 0; j<n; j++)
 //simple statements
 end of for
 end of for
end of if

end of function

O(1)

O(n)

O(n2)

T(n) = O(1) + O(n)

or

T(n) = O(1) + O(n2) ≈ O(n2)

Rule:

 Conditional Statements:

 Pick complexity of condition which is worst case

Algorithm complexity

▶ Algorithm is a step-by-step procedure to solve problems

▶ The types of algorithms depends on the type of task to be solved.

▶ Algorithms are classified based on the strategy used for solving problems.

▶ Algorithms can be expressed in : natural languages, pseudocode, and flowcharts.

▶ In one algorithm you could call another algorithm “concept of sub-algorithm”.

▶ Algorithm complexity is seen as Space complexity and time complexity.

Take-home messages

Thank you for your attention

