

Data representation & storage

GIGA Doctorate School

Christophe Phillips, Ir Ph.D.

Program

- Bits & bytes
- Data format
- Signal discretization
- File format & compression
- Storage & Safety

Program

- Bits & bytes
- Data format
- Signal discretization
- File format & compression
- Storage & Safety

Bits & bytes

- Bit (for "binary digit") =
 - a basic unit of information used in computing and digital communications.
 - can have only one of two values → physically represented with a twostate device.
 - most commonly represented as either a 0 or 1
- Byte =
 - a unit of digital information
 - most commonly consists of eight bits,
 - representing a binary number

Bytes

Originally,

- number of bits used to encode a single character of text in a computer
- hardware dependent
- convenient as power of $2 \rightarrow$ values from 0 to 255

Now

- *de facto* standard for smallest amount of "memory unit"
- 32- or 64-bit 'words', built of four or eight bytes
- aka. "octet", symbol 'o',

Memory size

Expressed in binary vs. decimal base

Name	Binary	Decimal	Discrepancy
Kilo-byte (kb)	2^10 = 1.024 o	1.000	2,4%
Mega-byte (Mb)	2^20 = 1.048.576 o	1.000.000	4,8%
Giga-byte (Gb)	2^30 = 1.073.741.824 o	1.000.000.000	7,4%
Tera-byte (Tb)	2^40 = 1.099.511.627.776 o	1.000.000.000.000	9,9%
Peta-byte (Pb)	2^50 = 1.125.899.906.842.674 o	1.000.000.000.000.000	12,6%

Transfer speed

- Typical bandwidth
- ► RAM, ~10Gb per second → 1Gb of data in ~ 0,1 second
- ▶ Hard drive, ~0,5Gb per second
 → 10Gb of data in ~ 20 second
- Network, ~100Mbps = ~ 0,1GB per second → 1Tb of data in ~ 10.000 seconds = ~2.8 hours !!!

Data transfer can be a bottle neck!

Program

- Bits & bytes
- Data format
- Signal discretization
- File format & compression
- Storage & Safety

USASCII code chart

- = letter, digit, or punctuation
- With 1 byte, 1 simple character, aka. 'char' from ASCII (American Standard Code for Information Interchange) to UTF-8 (Unicode Transformation Format – 8-bit)
- UTF-8 extended up to 4 bytes
 - \rightarrow extension to more characters and alphabets
 - \rightarrow mot common for WWW and emails encoding

Deb	5 -			••••		°°,	°°,	° 0	°,	¹ 0 ₀	'°,	¹ 1	1 1 1
	6 1	Þ 3 1	Þ 2 1	۵, ۱	Row	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	5P	0	0	P	```	P
	Ò	0	0	1	1	SOH	DC1	[!	1	Α	0	٥	q
	0	0	Ţ	0	2	STX	DCZ	•	2	6	Ĥ	9	r
	Ö	0		-	3	ETX	DC 3	#	3	C	S	c	5
	0		0	0	4	EOT	DC4	1	4	D	Т	d	t
	0	[ï	0	+	5	ENQ	NAK	%	5	E	υ	ŧ	2
	0	Γι_	1	0	6	ACK	SYN	8	6	F	V	1	۷
	0	Ĩ	1	L	7	8EL	ETĐ	•	7	G	*	g	w
	1	0	0	0	8	85	CAN	(8	н	×	h	×
		0	0	1	9	нт	EM)	9]	Ŷ	i	y j
to	1	0	Т	0	10	LF	\$U8		:	J	Z	ز	ž
ιυ	Т	0	I	1		VT	ESC	+	ì	к	C	k	
	Ŧ	I I	٥[0	12	FF	FS		<	L	N	1	
	I	T	0		<u>[</u> 13]	CR	GS	-	E	м	3	m	}
	,	T	I	0	14	50	RS		>	N	. ^	n	\sim
	1			1 T	15	\$ 1	US	1	?	0	-	0	DEL

Integer, signed or unsigned

- with 1 byte,
 - 'int8', values ∈ [-128 127]
 - 'unit8', values ∈ [0 255]
- with 2 bytes,
 - 'int16' or 'short', values \in [-32,768 32,767] i.e. [-(2¹⁵) 2¹⁵ 1]
 - 'uint16', values \in [0 65,535] i.e. [0 2^{16} 1]
- with 4 bytes,
 - 'int32' or 'long', values $\in [-(2^{31}) \ 2^{31} 1]$
 - 'uint32', values \in [0 4,294,967,295 i.e. [0 $2^{32} 1$]
- with 8 bytes,

...

Floating-point

- Single-precision = 32 bits = 4 bytes
- wide dynamic range of values with "floating radix point":
 - sign bit : 1 bit
 - exponent width: 8 bits
 - significand precision: 24 bits (23 explicitly stored)

 $ightarrow (-1)^{b_{31}} imes 2^{(b_{30}b_{29}\dots b_{23})_2 - 127} imes (1.b_{22}b_{21}\dots b_0)_2,$

- values up to (2 − 2⁻²³) × 2¹²⁷ ≈ 3.402823 × 10³⁸
- still limited (relative) precision, e.g. estimating (v+1) -v can be 0 !
- Half-/double-precision with 16/64 bits = 2/4 bytes

Program

- Bits & bytes
- Data format
- Signal discretization
- File format & compression
- Storage & Safety

Signal discretization

Some continuous values =

- 1. measured somewhere, and
- 2. stored numerically
- \rightarrow discretized value with **finite resolution**!

Two faces of "resolution" \rightarrow Different file weight!

- time/space \rightarrow sampling rate
- amplitude \rightarrow encoding precision

Encoding precision

How is the value represented on disk?

- Integer vs. float?
- Number of bytes?
- \rightarrow Different resolution

Sampling rate

How sparse/coarse are data sampled?

- \rightarrow sampling rate
- \rightarrow Nyquist theorem:

"Sampling Rate > 2 x highest frequency of signal"

Example for 3D image

Consider a 3D image with 256 x 256 x 128 = 2^{23} voxels

- ▶ 1 int16 per voxel → 16 Mb
- ▶ 1 float32 per voxel \rightarrow 32 Mb

Coloured image

→ 3 RGB values par voxel, e.g. 3 int8 per voxel → 24 Mb

Resample at half the resolution, i.e. 128 x 128 x 64 voxels \rightarrow divide sizes by 8

Program

- Bits & bytes
- Data format
- Signal discretization
- File format & compression
- Storage & Safety

File format

Open vs. closed file format:

- fully described vs. proprietary
- openly readable vs. requiring specific software
- community supported vs. software/company dependent

- \rightarrow Stick to open format whenever possible
- \rightarrow More flexibility to use with homemade software

The case of MS Word & Excel

Both are proprietary and cost €€€ + files are "binarized"

Word & .doc files, replace by

 \rightarrow 'MarkDown' (. md) files

 \rightarrow open editor/reader, e.g. Typora (<u>https://typora.io/</u>)

Excel & .xls files , replace by

 \rightarrow 'comma-separated value' or 'tab-separated value' (.csv/.tsv) files

 \rightarrow open editor/reader, e.g. CSVed (<u>https://csved.sjfrancke.nl/</u>)

Whenever possible and appropriate

T DataComments.md - Typora - 🗆 X	T DataComments.md - Typora —
<u>F</u> ile <u>E</u> dit <u>P</u> aragraph F <u>o</u> rmat <u>V</u> iew <u>T</u> hemes <u>H</u> elp	<u>F</u> ile <u>E</u> dit <u>P</u> aragraph F <u>o</u> rmat <u>V</u> iew <u>T</u> hemes <u>H</u> elp
Some comments about the data.	## Some comments about the data.
Overall ~79Gb: (~58k files & 208 folders)	Overall ~79Gb: (~58k files & 208 folders)
MSHS, 37Gb, 37 subjects	- MSHS, 37Gb, 37 subjects
• MSPA, 40Gb, 40 subjects	- MSPA, 40Gb, 40 subjects
MSP FLAIR/mask, 2.5Gb, 40 subjects	- MSP FLAIR/mask, 2.5Gb, 40 subjects
MSPA: possibly to exclude. s08825. Rather visible movement artefacts. Poor positioning in scanner -> cerebellum out of FOV? s00349. Some movement artefact + hyper-instensities (artefact) in orbito-frontal area for MT. s00356. hyper-instensities (artefact) in orbito-frontal area for MT + small meningiome between the frontal hemispheres.	<pre>#### MSPA: possibly to exclude. **s08825**. Rather visible movement artefacts. Poor positioning in scanner -> cerebellum out of FOV? **s00349**. Some movement artefact + hyper-instensities (artefact) in orbito-frontal area for MT.</pre>
	s00356. hyper-instensities (artefact) in orbito-frontal area for MT + small meningiome between the frontal hemispheres.

Excel in Genetics

"Gene name errors are widespread in the scientific literature"

<u>Abstract</u>:

The spreadsheet software Microsoft Excel, when used with default settings, is known to **convert gene names to dates and floating-point numbers**. A programmatic scan of leading genomics journals reveals that **approximately one-fifth of papers with supplementary Excel gene lists contain erroneous gene name conversions**.

Ziemann et al., Genome Biology 201617:177

Structured data

Data as

- key/value pairs
- hierarchical structure
- → use 'JavaScript Object Notation', i.e. .json, files

Example, task-Nback_bold.json

```
{
```

```
"RepetitionTime": 3.0,
"EchoTime": 0.0003,
"FlipAngle": 78,
"SliceTiming": [0.0, 0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8],
"MultibandAccellerationFactor": 4,
"ParallelReductionFactorInPlane": 2
```


Data compression

Lossless:

- ▶ no data/signal lost → replace "patterns" with fewer bytes (RLE).
- 2-4x compression rate, depending on data
- e.g. ZIP, PNG, JPEG2000

Lossy:

- Removes some signal \rightarrow irreversible loss!
- ► quality factor from 0 to 100 → >10x compression rate
- e.g. JPEG

Program

- Bits & bytes
- Data format
- Signal discretization
- File format & compression
- Storage & Safety

Hard-disk drive

HDD = electromechanical data storage device:

- magnetic storage to read/write data
- on one (or more rigid) rapidly rotating disks
- cheap and storage density increases (Moore's law)
- ► latency = ~a few ms,
- ▶ transfer rate up to ~1 Gb/s
- risk of failure increases with time but...

End of Life Wear-Out Increasing Failure Rate Decreasing Failure Rate Normal Life (Useful Life) Low "Constant" Failure Rate Time

eased Failure

The Bathtub Curve

Hypothetical Failure Rate versus Time

Solid-state drive

SSD = integrated circuit data storage device:

- non-volatile NAND flash memory to read/write data
- no mechanical or moving part
- latency < ms,</p>
- transfer rate up to a few Gb/s
- compared to HDD
 - more expensive and more reliable
 - less power consumption

ULiège mass-storage

- Personal space \rightarrow your own stuff
- ▶ Platform space \rightarrow raw data access
- Team space \rightarrow shared data & results

Keep in mind access time

 \rightarrow no direct processing of data!

Backup vs. Archive

Backup

- copy of current data/system
- includes files which are currently being accessed/changed
- → Restoring data/system to a previous point in time, if they are lost or become corrupted

Archive

- store data/information to be kept for a long period of time
- includes files which should not be modified, accidentaly or purposely
- \rightarrow Restoring the 'original' data/information, e.g. to re-analyse them

Local vs. Remote storage

Local, e.g. USB drive

- Cheap and easy
- Can be lost or corrupted with the rest of the computer
- \rightarrow Better than nothing but not so safe!

Remote, e.g. institutional mass-storage

- More expensive (for the institution/users) and more constraining (network access)
- Little risk of losing anything (tapes, redundant disks, multi-sites,...)
- \rightarrow Safest option, if available

For code, use versioning \rightarrow more on Thursday!

References

- https://en.wikipedia.org/wiki/Bit
- https://en.wikipedia.org/wiki/Byte
- https://en.wikipedia.org/wiki/Character (computing)
- https://en.wikipedia.org/wiki/ASCII
- https://en.wikipedia.org/wiki/UTF-8
- https://en.wikipedia.org/wiki/Integer_(computer_science)
- https://en.wikipedia.org/wiki/Single-precision_floating-point_format
- https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

References

- https://en.wikipedia.org/wiki/Markdown
- https://typora.io/
- https://en.wikipedia.org/wiki/Comma-separated_values
- https://en.wikipedia.org/wiki/Tab-separated_values
- https://csved.sjfrancke.nl/
- https://en.wikipedia.org/wiki/JSON
- https://doi.org/10.1186/s13059-016-1044-7
- https://en.wikipedia.org/wiki/Run-length_encoding
- https://en.wikipedia.org/wiki/JPEG
- https://en.wikipedia.org/wiki/Hard_disk_drive
- https://en.wikipedia.org/wiki/Solid-state_drive

Thank you for your attention!

