@ LIEGE université

GIGA

Introduction to computer science

GIGA Doctorate School

Master in Electrical Engineering and Ph.D. in Engineering
FRS-FNRS Senior Research Associate

Research and interest in “neuroimaging methods”

— data processing of brain images (MRI and PET) and electro-
physiological data (M/EEG)

Linked to:

- GIGA in silico medicine & GIGA CRC in vivo imaging
- Department of Electrical Engineering & Computer Science

Who are you ?

» Background
» Programming experience?

Day 1
9:00 - 12:30 : Basics of computer science (lectures)

1. Introduction to computer science : historical perspective, computer structure, operating
systems & languages [CP]

2. Data representation & storage: bits/bytes, data format, signal discretization, compression
[MB]

3. Mass storage & ULiege IT resources [YW]?

Request GitLab account to be activated.

12:30 - 14:00 Lunch break

14:00 - 15:00 : Setting up MATLAB programming course

Online resources presentation: theory and practicals [MB, CP] Pairing for the practicals

15:00 - 17:00 : Introduction to MATLAB programming & exercises, Part 1

1. Chapters 1 to 4 & video (1.1-3; 2.1-5)
2. Exercises

Day 2
9:00 - 10:30 : Introduction to MATLAB programming [MB, CP]

Question and answer about previous day's material Solution to the exercises

11:00 - 12:30 : Introduction to algorithmic thinking (lecture) [MB]
Different types of algorithms, computer logic

12:30 - 14:00 Lunch break

14:00 - 17:00 : Introduction to MATLAB programming & exercises, Part 2

Chapters 5 to 8 & video (3.1; 4.1-3) Exercises

Day 3

9:00 - 10:30 : Introduction to MATLAB programming [MB, CP]

Question and answer about previous day’s material Solution to the exercises

11:00 - 12:30 : Good practices in scientific computing (lecture) [CP]

Code modularity, validation, optimization, documentation

12:30 - 14:00 Lunch break

14:00 - 17:00 : Introduction to MATLAB programming & exercises, Part 3

Chapters 9 to 11 & video (3.2-4) Exercises

Day 4
9:00 - 10:30 : Introduction to MATLAB programming [MB, CP]
Question and answer about previous day's material Solution to the exercises

11:00 - 12:30 : Versioning & Git (lecture) [FR]

Problems, solution & tools + with Git hands-on session? = application Gitlab.
12:30 - 14:00 Lunch break
14:00 - 17:00 : Introduction to MATLAB programming & exercises, Part 4

Chapters 12 to 14 & video (5.1, 5.2) Exercises

Day5

9:00 - 10:30 : Introduction to MATLAB programming [MB, CP]

Question and answer about previous day’s material Solution to the exercises

11:00 - 12:30 : Working with clusters & parallel processing (lecture) [MG]
Working on cluster, parallel processing, data management, resources.

12:30 - 14:00 Lunch break

14:00 - 15:00 : Working with personal data ? Think GDPR ! [PFP]

15:00 - 17:00 : Working with Big Data
A series of talks (2-3?) by the GIGA researches on working with big data. The focus of the talks:

¢ The application field and scale of the problem
¢ The computational resources needed

* The data flow

e Key elements in the processing

» Historical perspective

» Computer structure

» Operating systems

» Programming languages

"The good news about computers is that
they do what you tell them to do.

The bad news is that
they do what you tell them to do."

- Ted Nelson

Program

» Historical perspective

» Computer structure

» Operating systems

» Programming languages

Computer science did NOT suddenly appear during World
War Il out of a genius mind.

Three parallel streams:

» Calculation instruments, from abacus to Pascal’s mechanical calculator
» Mathematical logic, from al-Khwarizmi (vilith century) to Alan Turing (XXt century)

» Automats, from antiquity (e.g. Hero of Alexandria) to ‘Jacquard loom’, and
great watch & clock makers

» 1837, the “Analytical Engine”, described by Charles Babbage
= 15t mechanical general-purpose computer, including:
- arithmetic logic unit + integrated memory
- control flow in the form of conditional branching and loops
— mechanical computer

Historical perspective

9 0]

9 0
10

9 0|
1 Off I

9 0
1 O}

H 0
- ! [‘
10
] Of

B. H. Babbage, del,

» 1837, the “Analytical Engine”, described by Charles Babbage
= 15t mechanical general-purpose computer, including:
- arithmetic logic unit + integrated memory
- control flow in the form of conditional branching and loops
— mechanical computer

» 1843, “algorithm” for the Analytical Engine, by Ada Lovelace
= 15t software (to calculate Bernoulli numbers)
- set of instructions to solve problems of any complexity
- symbolic representation by numbers of letters, musical notes, etc.
— from calculation to computation

https://en.wikipedia.org/wiki/Bernoulli_number
https://en.wikipedia.org/wiki/Bernoulli_number

» 1943-1945, Colossus computer, UK.

- 1st programmable, electronic, digital computer,
- but programmed by switches and plugs, not by a stored program

» 1945-1956, ENIAC (Electronic Numerical Integrator and
Computer), USA.

- programs hard coded into the machines with function tables 10000’s
of switches

- input and output through card reader and card punch

Peeosvues
> »

.
-
-
-
-

@ TV e TV
@ TEn e
S riETEYRS

-

-
»
*

..
LA RAAR AT
e diviewewes

3

Replacing a bad tube meant checking among ENIAC’s 19,000 possibilities.

Von Neumann architecture

» Proposed by Von Neumann in 1945

» Unifies Babbage’s Analytical Engine
and abstract Turing machine

» Fundamental ideas:

- Bring input, output and program in “memory unit”

- Operate only on this memory

— Stored-program computer keeps both program instructions
and data in read-write, “random-access memory” (RAM)!

Input
Device

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

OQutput

Device

Hardware innovations

» Inthe 1950’s & 1960’s, tubes are replaced by
transistors then integrated circuits:

- higher density

- more reliable
- less energy consumption

» In 1965, Moore’s law:
the number of transistors in an IC doubles every 18 months!

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) Sl
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. ji
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.

20'000’000'000 IBM z13 Storage Controller. SPARGAT
10,000,000,000 18-core Xeon Haswell-E5 \0
Mich: O raaies SoC\\ 0 F22-core Xeon Broadwell-E5
1-core Xeon Phi @ D S#Core Xeon vy Bridge-EX
5,000,000,000 RRT AR CER % .
8-core Xeon Nehalem-EX~, ‘ . zé‘:%‘g;\({z(’ gvbil‘aé%’ vl{\gH'MEﬁ-‘i ‘mobile SoC")
Six-core Xeon 7400, & i
5 U Iris Core i7 Broadwell-U
o Y0 8 o2 ST Tnenr ey
Pentium D Presler > uad-core + GPU Core i7 Haswell
WERS o
1 ,000,000,000 Itanium 2 with Pe % Q. Apple A7 {dual-core ARME4 “mobile SoC*)
500,000,000 Lo g E NIl e o Lo
.000, tanium 2 Madison 6M€) o, Pore 2 buc Wondaie
Pentium D Smithfield Wore ‘D\n Conroe
ftanum 2 McKinley@p glell @Core 2 Duo Wolidale 3M
Pentlum 4 Prescott-; \OCtxe 2 Duo Allendale
¥ . Pentium 4 Cedar Mill
1 00,000.000 AMD K3 Pentium 4 Prescott
Pentium 4 Northwogsfe
= 50,000,000 Pentium 4 Wilametiagyty 0 O ocn @atom
(:D, Pentium Il Mobile Dixan, QARM Cortex-A9
AMD & Q@Fentium Il Coppermine
8 D K6-Hll
o d Wl Katmal
) 10,000,000 . zg ﬂgﬁg;pu'gesg‘am@g
— U
2 5,000,000 math
©
= &0
Intel 804886,
1,000,000
Ti Explorer's 32-bit g9
500,000 Liep'machine ch Ao

Intel 6
intel BOGSI !g&l o Q@r8m 3

Motorota 68020 OB(EC e
100,000 intes oo it tan 2
o M
50,000 Qintel 80186
L % ’R?ffw'? e
. 2 65C816 0.
10,000 S i %ﬁz Neiis
5,000
1,000
QO AV Ad A0 A2 O & O O N X © & O A4 > O D 0 9 ™ o
FFEELLE S LSS FT T

Year of introduction

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at QurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.

In the 1960’s & 1970’s, development of :

» mainframes
- Large centralised infrastructure — high performance
- Passive terminals — submit ‘batches’
» mini-computers
- All-in-one machine — direct interaction
- Small and cheap (actually still pretty big and expensive...)

(a) and (b), IBM mainframes at Volkswagen
and NASA
(c), DEC mini-computer

Micro-computer

1971, first Intel microprocessor
» All main elements of a computer in one integrated circuit
» No wiring, except on ‘motherboard’

— micro-computer

In 1975,
» Altair 8800, developed by Bill gates & Paul Allen
* Apple 1, developed by Steve Jobs and Steve Wozniak

Personal Computer (PC)

» 1977, TRS-80
» 1979, Apple 2 with 15t spreadsheet software

» 1982, Commodore 64 — gaming

» 1982, IBM-PC with
- Intel “x86” architecture (still used now)
- MS-DOS from Microsoft

— First really professional computer
for the office

» Software was first part of the computer and free
» Increasing distinction between “hardware” and “software”
» In the 70’s a 80’s, more standardized hardware

— standardized and specific software:

) operating system: Unix, MS-Dos (later on Windows), Macintosh
System 1 (later on Mac 0S), Linux,...

) applications: spreadsheet, text editing, games, image & audio
processing,...

Definition:

an algorithm is an unambiguous specification of
how to solve a class of problems.

An algorithm

>

>
4
>

expressed within a finite amount of space and time

in a well-defined formal language for calculating a function.

starting from an initial state and initial “input”,

the instructions describe a computation that, when executed, proceeds
through a finite number of well-defined successive states,

eventually producing “output” and terminating at a final ending state.

The (abstract) Turing machine models a machine with

» tape = infinite series of cells with 1’s or O’s

» control unit = finite set of elementary instructions
» Input/output = to read, write or move the tape

Example: “in state 42, if the symbol seen is 0, write a 1, if the symbol seen is 1,

change into state 17; in state 17, if the symbol seen is 0, write a 1 and change
to state 6; etc.”

Given any computer algorithm, a Turing machine capable of
simulating that algorithm's logic can be constructed.

References

https://en.wikipedia.org/wiki/Abacus
https://en.wikipedia.org/wiki/Mechanical calculator
https://en.wikipedia.org/wiki/Muhammad ibn Musa al-Khwarizmi
https://en.wikipedia.org/wiki/Alan Turing
https://en.wikipedia.org/wiki/Jacquard loom
https://en.wikipedia.org/wiki/Hero of Alexandria
https://en.wikipedia.org/wiki/Charles Babbage
https://en.wikipedia.org/wiki/Analytical Engine
https://en.wikipedia.org/wiki/Mechanical computer
https://en.wikipedia.org/wiki/Ada Lovelace
https://en.wikipedia.org/wiki/Bernoulli humber
https://en.wikipedia.org/wiki/Colossus computer
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Turing machine
https://en.wikipedia.org/wiki/Von Neumann architecture
https://en.wikipedia.org/wiki/Moore%27s law
https://en.wikipedia.org/wiki/Computer

vV V.V vV vV vV VvV vV vV VvV vV VvV vV v v VY

https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Jacquard_loom
https://en.wikipedia.org/wiki/Jacquard_loom
https://en.wikipedia.org/wiki/Hero_of_Alexandria
https://en.wikipedia.org/wiki/Hero_of_Alexandria
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Mechanical_computer
https://en.wikipedia.org/wiki/Mechanical_computer
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Bernoulli_number
https://en.wikipedia.org/wiki/Colossus_computer
https://en.wikipedia.org/wiki/Colossus_computer
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Moore's_law
https://en.wikipedia.org/wiki/Moore's_law
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer

Program

» Historical perspective
» Computer structure
» Operating systems

» Languages

Application

™ -

Operating system

- -

Hardware

Outside the “motherboard”

Screen, keyboard, mouse, speaker, printer, scanner, power
supply,... plugged to the “motherboard”

f,_,_b_l\ ‘, [;ﬁ_/ J//\ .
\ \

The “motherboard”

>

CPU = microprocessor
- executes the instructions.

- includes very fast local memory locale, aka “cache”

RAM = central memory

- quickly read/write instructions and data

- lost when power is off
GPU (Graphics Processing Unit)

- like CPU but parallelized infrastructure

- generates and stores image frames
Northbridge = connecting fast components

Southbridge = handles slower input/output
- hard-drives (internal/external)
- USB peripherals (keyboard, mouse, USB stick,...)
- network connexions, incl. Wi-Fi & cable

Interconnexion through “data bus”

ok

Central Processing Unit

Output
Device

Input
Device

T-

‘ Southbridge I
<A

oty = . .j,, - & “
-~ hd il L
_, : — | :

NADE IN TAIWAN

» RAM,

- fast but not persistent — used by microprocessor (data & operations)
- limited to a few Gb

» Hard drive
- slower but persistent — used to store data, code, OS
- up toseveral Tb

» Cache
- inside the CPU — super fast but built in

» ROMY/BIOS (Basic Input Output System)

- boot firmware and power management firmware

Get some

» multi-core processor

higher clock speed
larger RAM
faster data transfer

vV v .V

Caveats

» need specific software/compiler to parallelize operations
» depend on nature of data and processing pipeline
» depend on mass-storage solution (access & r/w time!)

LW

7

\

|

CPU Core CPU Core
and and
L1 Caches L1 Caches

|

\.

‘ Back side ‘
Bus Interface
and
L2 Caches
t Front side

J/

References

» https://en.wikipedia.org/wiki/Computer architecture

» https://en.wikipedia.org/wiki/Computer hardware

» https://en.wikipedia.org/wiki/Graphics processing unit

» https://en.wikipedia.org/wiki/Central processing unit

» https://en.wikipedia.org/wiki/Bus (computing)
» https://en.wikipedia.org/wiki/BIOS
» https://en.wikipedia.org/wiki/Multi-core processor

» “Eléments d'informatique médicale”, RADI2008-1, Sébastien Jodogne

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor

Program

» Historical perspective

» Computer structure

» Operating systems

» Programming languages

Application

™ -

Operating system

- -

Hardware

An “operating system” (OS) = system software to

Applications
[3

1 -

¥
KEemel

L [] []
—4 } { }
CPU Me oy

| I
I .

Devices

1. manage computer hardware and software resources, and

2. provide common services for computer programs:

» Process management.

allocate resources to processes, enable processes to share and exchange
information, protect the resources of each process from other processes

and enable synchronization among processes

» Interrupts.

Applications
[3

1 -

KEemel
[]

}

1

+
CPU

L
Me oy

*
Devices

signal to the processor emitted by hardware or software indicating an

event that needs immediate attention
» Memory management.

management of computer memory resource

» File system.
controls how data is stored and retrieved

Applications
[3

1 -

¥
KEemel

.] [)
— !

CPU w {Memnr'_.f

| I
I .

Devices

Device drivers.
operates or controls a particular type of device attached to a computer

Networking.
allows “nodes” to share resources

Security.

protection of computer systems from theft or damage to their hardware,
software or electronic data, as well as from disruption or misdirection of
the services they provide

I/O.

communication between an information processing system, such as a
computer, and the outside world, possibly a human or another
information processing system

Current main players

» Windows
» Mac OS
» Linux

» (Unix)

Memory| |Devices

» Open-source OS, since 1991

— free to use, copy, modify but not to sell
— multiple distributions and flavours
— supported by a large community

» On PC:

- now (almost) as easy to use as a Win/Mac with simple GUI
- typically runs open-source software: open office, Gimp,...
- usually more secured than Windows/Mac

» On servers & clusters
- Standard OS — need to know command line

15t version in 1984

Since 2001, based on a Unix kernel
Proprietary to Apple, i.e. closed

With GUI and command line

2"d most common OS on PC's.

More secure than Windows OS (but...)

15t version in 1985

Originally graphical operating system shell for MS-DOS
Proprietary to Microsoft, i.e. closed & €€€

Other MS software, like Office, are €€€

Most common OS on PC’s

More exposed to security issues (but...)

Use “virtual machines” (VM) to execute
» an entire OS, with applications, on a virtual hardware (system VM)
» aprogram in a platform-independent environment (process VM)

on the same physical machine, i.e. original hardware and OS.
— easy to create, copy, kill, relaunch, distribute,...
For example:

» System VM with ‘VirtualBox’
» Process VM with ‘Docker’

References

» https://en.wikipedia.org/wiki/Operating system

» https://en.wikipedia.org/wiki/Linux
» https://en.wikipedia.org/wiki/MacOS
» https://en.wikipedia.org/wiki/Microsoft Windows

» https://en.wikipedia.org/wiki/Virtual machine

» https://www.virtualbox.org/

» https://www.docker.com/

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Virtual_machine
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.docker.com/
https://www.docker.com/

Program

» Historical perspective
» Computer structure S T
» Operating systems a2

» Programming languages Operating system
-~ -

Hardware

Code — set of specific instructions that produce some output
— script or (set of) functions

Script — automating the execution of a list of tasks

Function — define a specific (set of) operations
— output depends on a set of input

Toolbox — set of (combined) functions, sometimes with a GUI
Software — anything bit of code that is running the hardware

"Programming: when the ideas turn into the real things."

- Maciej Kaczmarek

"The most important single aspect of software development is to
be clear about what you are trying to build."

- Bjarne Stroustrup

» closer to hardware vs. relying on intermediate software layer
» more complicated vs. easier code writing

» tedious vs. more abstract

» faster and efficient vs. usually a bit less so

A “compiler” or “interpreter” translates code to ‘machine code’
to create an executable program or execute it.

Classic ones for scientific computing
» C/C++

» Java

» Python

» R

» Matlab/Octave

» Julia

The perfect Vanilla Cake:

1.

2.

3.

9.

Preheat oven to 3509 F.

Prepare three 8-inch cake pans by spraying with baking spray or buttering and lightly flouring.

Combine flour, baking powder, baking soda, and salt in a large bowl. Whisk through to combine. Set aside.
Cream butter until fluffy and then add sugar. Cream together for about 8 more minutes.

Add eggs, one at a time, and mix just until combined.

Add flour mixture and buttermilk, alternately, beginning and ending with flour.

Add vanilla and mix until thoroughly combined.

Divide among pans and bake for 25-30 minutes until edges turn loose from pan and toothpick inserted into
middle of cake comes out clean.

Remove from the oven and allow to cool for about 10 minutes.

10. Turn out onto wire cooling racks and allow to cool completely.

>

>

>

>

Compiler — generate machine code from source code
- typically lower-level language
- no cross-platform support for exec code

Interpreter — step-by-step executors of source code
- typically higher-level language
- Easy (easier) cross-platform

Both available for most high-level language
Can be a mix of both

» Started in 1973, standardized in 1989

» Low level language (e.g. memory management)
— very efficient when compiled

» Portable on any hardware and OS
C++

» Based on C with added object-oriented & other programing features
» Started in 1979, standardized since 1998

High-level general-purpose language (class-based and object-oriented)
ideally "write once, run anywhere" (WORA)

applications are typically compiled to bytecode that can run on any “Java
Virtual Machine” (JVM) regardless of computer architecture

open-source compiler (GNU GPL)
fairly stable

started in 1991, latest version (3.7.4) out in July 2019.

interpreted high-level programming language for general-purpose
programming

dynamic type system, object-oriented and automatic memory management.
relies on large and comprehensive standard library.

interpreters available for many OS’s.

open source with community-based development model

still evolving: main version
(https://frwikipedia.org/wiki/Python (langage)#Historique des versions) and libraries

https://fr.wikipedia.org/wiki/Python_(langage)#Historique_des_versions)
https://fr.wikipedia.org/wiki/Python_(langage)#Historique_des_versions)

started in 1992, stable since 2000
open source with community-based development model
high-level interpreted language, free software environment (GNU GPL)

mostly used among statisticians and data miners for developing statistical
software and data analysis.

pre-compiled binary versions available for most OS's.

command line interface, plus graphical front-ends and IDE’s (integrated
development environments).

started in 1984 by MathWorks, based on C and Lapack libraries

multi-paradigm numerical computing environment, good at matrix
manipulations, implementation of algorithms

can interface with programs written in C, C++, Java, and Python.
large number of users-contributed (open source) packages

but proprietary programming language — €€€ licence

fairly stable (back compatibility!)

Octave = free alternative to Matlab but not 100% compatible or as
efficient

started in 2012, v1.2 released in August 2019
free open-source language, runs on most OS’s
high-level general-purpose dynamic programming language

originally designed for high-performance numerical analysis and
computational science

allows concurrent, parallel and distributed computing, and direct calling of
C and Fortran libraries

includes efficient libraries for floating-point calculations, linear algebra,
random number generation, and regular expression matching.

other libraries are available from the community

"The only way to learn a new programming language
is by writing programs in it."

- Dennis Ritchie

Still

» some algorithm/coding principles remain the same across languages
» pick the language of your community/appropriate for your data

» do not reinvent the wheel

"1. Start simple. 2. Get it to work. 3. Then, add complexity."
- Tom Bredemeier

"One of the best programming skills you can have is knowing
when to walk away for awhile."

- Oscar Godson

References

» https://addapinch.com/best-vanilla-cake-recipe/

» https://en.wikipedia.org/wiki/Software

» https://en.wikipedia.org/wiki/C (programming language)
» https://en.wikipedia.org/wiki/C%2B%2B
» https://en.wikipedia.org/wiki/Java (programming language)

» https://en.wikipedia.org/wiki/Python (programming language)

» https://en.wikipedia.org/wiki/R (programming language)

» https://en.wikipedia.org/wiki/MATLAB

» https://en.wikipedia.org/wiki/GNU Octave

» https://en.wikipedia.org/wiki/Julia (programming language)
» https://twitter.com/CodeWisdom

https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/GNU_Octave
https://en.wikipedia.org/wiki/GNU_Octave
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://twitter.com/CodeWisdom

< LIEGE université
GIGA

Thank you for your attention!

@ LIEGE université
GIGA

