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SPM work flow 
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fMRI & BOLD signal 
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https://www.fil.ion.ucl.ac.uk/spm/course/slides10-zurich/Kerstin_BOLD.pdf 



A simple fMRI experiment 
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BOLD response in the primary auditory cortex 

Stimuli: passive word listening versus rest 



Looking at 2 scans 
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Looking at 2 scans 
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ON-OFF, just one scan per condition 



Simple fMRI example dataset 
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Passive word 
listening 

versus rest 

7 cycles of  
rest and listening 

Each epoch 6 scans 
with 7 sec TR 

Question: Is there a change in 
the BOLD response between 

listening and rest? 

One session, one 
subject 

Time series of BOLD  
responses in one voxel 

Stimulus function Stimulus function 



Voxel by voxel statistics 
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statistic image or SPM 
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single voxel 
time series 

Is there an effect? 



Voxel by voxel statistics 
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parameter estimation 

hypothesis test 

statistic image or SPM 

statistic 
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single voxel 
time series 

model specification 
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Single voxel, two-sample t-test 
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voxel time series 

T
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Intensity 

0 1 

voxel intensity 

Question: Is there a change 
in the BOLD response 
between listening and rest? 

t-statistic image 
SPM{t} 

compares size 
of effect to its 
error standard 

deviation 

𝑡 =
µ1 − µ0

𝜎2 1
𝑛1

 + 1
𝑛0

 

 



Single voxel, regression model 
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Intensity 

T
im

e
 = b1 b2 + 

x1 x2 

+ 

er
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e~N(0, s2I) 
(error is normal and 
independently and  

identically distributed) 

Question: Is there a change 
in the BOLD response 
between listening and rest? 

Hypothesis test: 

b1 = 0? 

(using t-statistic) 



Model as basis functions 
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Data 

= b2 b1 + + 

Regressor 1 Regressor 2 
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Design matrix 
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General Linear Model 
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Model is specified by 

1. Design matrix X 

2. Assumptions about e 

N: number of scans 

p: number of regressors 

eXy  b

),0(~ 2INe s
e



GLM & Mass univariate approach 
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The design matrix embodies all available 

knowledge about experimentally controlled factors 

and potential confounds. 



Classical statistics 

• parametric 
– one sample  t-test 

– two sample t-test 

– paired t-test 

– Anova 

– AnCova 

– correlation 

– linear regression 

– multiple regression 

– F-tests 

– etc… 

 

• non-parametric?  
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all cases of the 

General Linear Model 
 assume normality 

  to account for serial correlations: 

 Generalised Linear Model 
 

 SnPM 
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Parameter estimation 
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eXy  b
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Objective: 

estimate 

parameters to 

minimize 




N

t

te
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2

Ordinary least squares 

estimation (OLS) (assuming 

i.i.d. error): 
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Geometric perspective on the GLM 
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y 
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Design space 

defined by X 

x1 

x2 b̂ˆ Xy 

Smallest errors (shortest 
error vector) when e is 
orthogonal to X 

Ordinary Least Squares (OLS) 

0eX T

b̂XXyX TT 

0)ˆ(  bXyX T
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N data points → N dimension space ! 
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Problems with fMRI time series 

 

1. The BOLD response  has a delayed and 
dispersed shape. 

2. The  BOLD signal includes substantial 
amounts of low-frequency noise  (e.g. 
due to scanner drift). 

3. Due to breathing, heartbeat & 
unmodeled neuronal activity, the errors 
are serially correlated. This violates 
the assumptions of the noise model in 
the GLM. 
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Problem 1: BOLD response 
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Boynton et al, NeuroImage, 2012. 

Scaling 
Additivity 

Shift invariance 
Hemodynamic response function (HRF): 



Solution for the BOLD response  
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  HRF 

Convolve stimulus function with a canonical 
hemodynamic response function (HRF): 



Problem 2: Low frequency noise 
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• Physiological noise + scanner 
drift 

• Aliased high frequency effects 

 Power in the low frequencies 
 

Power spectrum 



Solution with high pass filtering 
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discrete cosine 

transform (DCT) set 

blue =  data 

black =  mean + low-frequency drift 

green =  predicted response, taking into 
account  low-frequency drift 

red =  predicted response, NOT taking 
into  account low-frequency drift 



𝑒~𝒩(0, 𝜎2𝐼) 

Problem 3: Serial correlations 
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)(eCov

autocovariance 
function 

N

N

i.i.d: 

𝑒~𝒩(0, 𝜎2𝑉) 



Solution for serial correlations 
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𝑊𝑦 = 𝑊𝑋𝛽 + 𝑊𝑒    𝑊𝑒~𝒩(0, 𝜎2𝑊𝑇𝑉𝑊) 

𝑦 = 𝑋𝛽 + 𝑒       𝑒~𝒩(0, 𝜎2𝑉) 

𝑰 

Let     𝑊𝑇𝑊 = 𝑉−1  

𝒚𝒔 𝑿𝒔 𝒆𝒔 
𝑊 

𝑊𝑇𝑉𝑊 

𝑉 

Equivalent to the Weighted Least Square estimator 

Solution : Whitening the data 
BUT this requires an estimation of V  



Multiple covariance components  
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=  1 + 2 

Q1 Q2 

Estimation of hyperparameters  with ReML (Restricted Maximum 
Likelihood). 
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enhanced noise model at voxel i 

error covariance components 
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Maximum Likelihood Ordinary least-squares 

ReML (pooled estimate) 

•2 passes (first pass for selection of voxels) 
•more accurate estimate of V 
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voxel j: 
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Estimation in SPM 



Limitations 
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The AR(1)+white noise model may 

not be enough for short TR (<1.5 s) 

 
 

= 𝜆1 +𝜆2 +𝜆3 +𝜆4 +𝜆5 

V 
𝑄1

 𝑄2
 𝑄3

 𝑄4
 𝑄5

 

+ … 

The flexibility of the ReML enables the use of 
any number of components of any shape  



Content 

• Introduction 

 

• General Linear Model 

 

• Parameter estimation 

 

• Improved model 

 

• Conclusion 

 

35 



A mass univariate approach 
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Summary 

Mass univariate approach:  

• Fit GLMs with  

– design matrix, X,  

– to data at different points in space  

– to estimate local effect sizes, b  

• GLM, a very general approach that 
accommodates 

– Hemodynamic Response Function 

– Nuisance effects, e.g. high pass filtering 

– Error term covariance, e.g. temporal 
autocorrelation 
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Summary 
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𝑦  = +𝜀 

𝛽 

𝛽 = (𝑋𝑠
𝑇𝑋𝑠)

−1𝑋𝑠
𝑇𝑦𝑠 

noise assumptions: 

Pre-whitening:   𝑋𝑠 = 𝑊𝑋   𝑦𝑠 = 𝑊𝑦   𝜀𝑠 = 𝑊𝜀 

𝛽 1 = 3.9831 

𝛽 2−7 = {0.6871, 1.9598, 1.3902, 166.1007, 76.4770, −64.8189} 

𝛽 8 = 131.0040 

𝜀𝑠 = 

𝜎 2 = 𝜀𝑠 𝑇
𝜀𝑠 

𝑁−𝑝  𝛽 ~𝑁 𝛽, 𝜎2(𝑋𝑠
𝑇𝑋𝑠)

−1  

𝜀~𝑁(0, 𝜎2𝑉) 



Why modelling? 
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1. Decompose data into effects and error 
2. Form statistic using estimates of effects 

and error 

Make inferences about effects of interest Why? 

How? 

Use any available knowledge Model? 

Contrast: 
e.g. [1 -1 ] Stimuli &  

other effects 

data model 

effects 
estimate 

error 
estimate 

statistic 
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