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Single voxel inference 
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Null distribution of test statistic T 𝜶 = 𝒑(𝒕 > 𝒖|𝑯𝟎) 

u 

Decision rule (threshold) u: 

   determines false positive  
   rate α 

Null Hypothesis H0:  
   zero activation 

 Choose u to give 
acceptable α under H0 



Classical hypothesis testing… 
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• Null hypothesis H 
– test statistic 

– null distributions 

• Hypothesis test 
– control Type I error 

• incorrectly reject H 

– test level  
• Pr(“reject” H | H)   

• p –value 
– min  at which H 

rejected 

– Pr(T  t | H) 

– characterising “surprise” 

t –distribution, 32 df. 

F –distribution, (10,32) df. 



Sensitivity = TP/(TP+FN) = b  

Specificity = TN/(TN+FP) = 1 -  

FP = Type I error or ‘error’ 
FN = Type II error 
 = p-value/FP rate/error rate/significance level 
b = power 

Sensitivity & specificity 

ACTION 

Don’t 
reject 

Reject 

TRUTH H0 true 
True 
Negative 

False 
Positive 

H0 false 
False 
Negative 

True 
Positive 



Multiple tests 
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Signal 

If we have 100000 voxels, α=0.05  

 5000 false positive voxels. 
 
This is clearly undesirable!  
Need to define a null hypothesis for 
a collection of tests. 

Noise 



Multiple tests 
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If we have 100000 voxels, α=0.05  

 5000 false positive voxels. 
 
This is clearly undesirable!  
Need to define a null hypothesis for 
a collection of tests. 

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 

Use of ‘uncorrected’ p-value, α =0.1 

Percentage of Null Pixels that are False Positives 

Noisy data 



Where’s the signal? 

t > 0.5 t > 3.5 t > 5.5 

High Threshold Med. Threshold Low Threshold 

Good Specificity 
 

Poor Power 
(risk of false 
negatives) 

Poor Specificity 
(risk of false 

positives) 
 

Good Power 

Assessing statistics images 
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Family-Wise Null Hypothesis 

13 
FWE 

Use of ‘corrected’ p-value, α =0.1 

Use of ‘uncorrected’ p-value, α =0.1 

Family-Wise Null Hypothesis: 
Activation is zero everywhere 

If we reject a voxel null hypothesis at any voxel, 
we reject the family-wise Null hypothesis  

A FP anywhere in the image gives a Family Wise Error (FWE) 

Family-Wise Error rate (FWER) = ‘corrected’ p-value 



Bonferroni correction 
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The Family-Wise Error rate (FWER), αFWE,  for  a 

family of N tests follows the inequality: 
 
 
 
where α is the test-wise error rate. 

𝛼𝐹𝑊𝐸 ≤ 𝑁𝛼 

𝛼 =
𝛼𝐹𝑊𝐸
𝑁

 

Therefore, to ensure a particular FWER choose: 

This correction does not require the tests to be 
independent but becomes very stringent if 
dependence. 



Bonferroni correction, example 

• Experiment with N = 100000 independent voxels and 40 
d.f. 

– v = unknown corrected probability threshold,  

– find v such that family-wise error rate  = 0.05 

• Bonferroni correction: 

– probability that all tests are below the threshold, 

– use v =  / N 

– here v=0.05/100000=0.0000005  

 threshold t = 5.77  

• Interpretation: 

Bonferroni procedure gives a corrected p-value,  

i.e. for a t statistics = 5.77,  

– uncorrectd p value = 0.0000005 

– corrected p value = 0.05 
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100 by 100 voxels. 
10000 independent measures 
Fix the PFWE = 0.05, z threshold ? 

100 by 100 voxels. 
100 independent measures 
Fix the PFWE = 0.05, z threshold ? 

v=/ni where ni is the number of independent observations. 

Bonferroni:  
v = 0.05 / 10000 = 0.000005  
      threshold z = 4.42 

Bonferroni:  
v = 0.05 / 100 = 0.0005  
    threshold z = 3.29 

Bonferroni & independent observations 



100 by 100 voxels. 
10000 independent measures 
Fix the PFWE = 0.05, z threshold ? 

100 by 100 voxels. 
How many independent 
measures ??? 

Bonferroni:  
v = 0.05 / 10000 = 0.000005  
      threshold z = 4.42 

Bonferroni & independent observations 



Random Field Theory 
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 Consider a statistic image as a discretisation of a 
 continuous underlying random field. 
 
 Use results from continuous random field theory. 

lattice 
representation 



RFT and Euler Characteristic 
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   𝐹𝑊𝐸𝑅 = 𝑝 𝐹𝑊𝐸  
              ≈  𝐸 𝜒𝑢  

Euler Characteristic 𝜒𝑢: 
 Topological measure 

    𝜒𝑢  =  # blobs - # holes  

 
 at high threshold u: 

    𝜒𝑢  =  # blobs 



Euler characteristic… 

Threshold z-map 
at 2.75 

EC = 1 

Threshold z-map 
at 2.50 

EC = 3 



Expected Euler Characteristic 
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𝐸 𝜒𝑢 = 𝜆 Ω Λ
1 2  𝑢 exp (−𝑢2/2)/(2𝜋)3/2 

2D Gaussian Random Field 

100 x 100 Gaussian Random Field 
with FWHM=10 smoothing 
α𝐹𝑊𝐸 = 0.05  𝑢𝑅𝐹𝑇 = 3.8 

(𝑢𝐵𝑂𝑁𝐹 = 4.42,  𝑢𝑢𝑛𝑐𝑜𝑟𝑟= 1.64) 

Search volume 
Roughness 

(1/smoothness) 
Threshold 



Smoothness 
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Smoothness parameterised in terms of FWHM: 
Size of Gaussian kernel required to smooth i.i.d. noise to 
have same smoothness as observed null (standardized) 
data.  
 

 = b + Y X 

data matrix 

d
e
si

g
n

 m
a

tr
ix

 

parameters errors + ? =  ? 
voxels 

scans 

 estimate 

b 
^ 

 residuals 

estimated 

component 

fields 

parameter 

estimates 

variance s2 

estimated variance 

 

 
= 

FWHM 

1 2 3 4 

2 4 6 8 10 1 3 5 7 9 

RESELS (Resolution Elements): 
1 RESEL = 𝐹𝑊𝐻𝑀𝑥𝐹𝑊𝐻𝑀𝑦𝐹𝑊𝐻𝑀𝑧 
RESEL Count R = volume of search region in units of smoothness 

Eg: 10 voxels, 2.5 FWHM, 4 RESELS 

The number of resels is similar, but not 
identical to the number independent 
observations. 
Smoothness estimated from 
spatial derivatives of standardised 
residuals: 
Yields an RPV image containing local 
roughness estimation. 



RFT intuition 
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 Corrected p-value for statistic value t  

•  Statistic value t increases ? 

– 𝑝𝑐 decreases (better signal) 

•  Search volume increases ( () ↑ ) ? 

– 𝑝𝑐 increases (more severe correction) 

•  Smoothness increases ( ||1/2 ↓ ) ? 

– 𝑝𝑐 decreases (less severe correction) 

𝑝𝑐 = 𝑝 max𝑇 > 𝑡  
      ≈  𝐸 𝜒𝑡  
      ∝  𝜆 Ω Λ 1 2  𝑡 exp (−𝑡2/2) 



RFT, unified theory 
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General form for expected Euler characteristic 
 •  t, F & 2 fields • restricted search regions • D dimensions • 

Rd (): d-dimensional Lipschitz-Killing 

curvatures of  (≈ intrinsic volumes): 
 – function of dimension, 

     space  and smoothness: 

 

       R0() = () Euler characteristic of  

       R1() = resel diameter 

       R2() = resel surface area 

       R3() = resel volume 

 

rd (u) : d-dimensional EC density of the field 
 – function of dimension and threshold, 

    specific for RF type: 

E.g. Gaussian RF:  

 r0(u) = 1- (u)  

 r1(u) = (4 ln2)1/2  exp(-u2/2) / (2p) 

 r2(u) = (4 ln2)     u     exp(-u2/2) / (2p)3/2 

 r3(u) = (4 ln2)3/2  (u2 -1)    exp(-u2/2) / (2p)2 

 r4(u) = (4 ln2)2     (u3 -3u)  exp(-u2/2) / (2p)5/2 

 

 
 

𝐸 𝜒𝑢(Ω) =  𝑅𝑑(Ω)ρ𝑑(𝑢)

𝐷

𝑑=0

 



Estimated component fields 

data matrix 

d
e
s
ig

n
 

m
a
tr

ix
 

parameters errors 
+ ? =  ? 

voxels 

scans 

estimate 

b 
^ 

residuals 

estimated 
component 

fields 

parameter 
estimates 

estimated variance  
= 

Each row is 
an estimated 
component field 
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var,cov,cov

,covvar,cov

,cov,covvar

Smoothness, PRF, ResEls... 

• Smoothness ||  
– variance-covariance matrix of 

partial derivatives (possibly location 
dependent) 

 
 
 
 
 

• Point Response Function PRF 
 
 
 
 
 

 
• Full Width at Half Maximum 

FWHM. Approximate the peak of 
the Covariance function with a 
Gaussian 

• Gaussian PRF 

–   – kernel var/cov matrix 
–  ACF  2  
–   = (2)-1 
FWHM f = s (8ln(2)) 
  fx 0 0 
–     0  fy 0 1 

 0 0  fz  8ln(2) 
ignoring covariances 

 || = (4ln(2))3/2 / (fx  fy  fz) 

 
• Resolution Element (ResEl) 

– Resel dimensions (fx  fy  fz) 
– R3() = () / (fx  fy  fz) 

if strictly stationary 

 
E[(Au)] = R3() (4ln(2))3/2 (u 2 -1) exp(-u 2/2) 

/ (2p)2  

      R3() (1 – (u)) 
 for high thresholds u 



RFT assumptions 

• The statistic image is assumed to be a good  
lattice representation of an underlying random 
field with a multivariate Gaussian distribution. 

• These fields are continuous, with an autocorrelation 
function twice differentiable at the origin. 
 

 The threshold chosen to define clusters is high  
enough such that the expected EC is a good  
approximation to the number of clusters. 

 The lattice approximation is reasonable, which implies the 
smoothness is relatively large compared to the voxel size. 

 The errors of the specified statistical model are normally 
distributed, which implies the model is not misspecified. 

 

• Smoothness of the data is unknown and estimated: 
very precise estimate by pooling over voxels  stationarity 
assumption. 
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Signal 

Signal+Noise 

Noise 

FDR illustration: 



11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% 

Control of Per Comparison Rate at 10% 

Percentage of Null Pixels that are False Positives 

FWE 

Control of Familywise Error Rate at 10% 

Occurrence of Familywise Error 

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7% 

Control of False Discovery Rate at 10% 

Percentage of Activated Pixels that are False Positives 



Benjamini & Hochberg Procedure 

• Select desired limit  on E(FDR) 

• Order p-values, p(1)  p(2)   ...  p(V) 

• Let r be largest i such that 

 

 

• Reject all hypotheses  
corresponding to 
 p(1), ... , p(r). 

p(i)   i/V* 

p(i) 

i/V 

i/V  /c(V) 

p
-v

al
u
e 

0 1 

0
 

1
 

JRSS-B (1995) 57:289-300 



Signal Intensity 3.0 Signal Extent   1.0 Noise Smoothness 3.0 

p =  z =  

1 

B&H: Varying Signal Extent 



Signal Intensity 3.0 Signal Extent   2.0 Noise Smoothness 3.0 

p =  z =  

2 

B&H: Varying Signal Extent 



Signal Intensity 3.0 Signal Extent   3.0 Noise Smoothness 3.0 

p =  z =  

3 

B&H: Varying Signal Extent 



Signal Intensity 3.0 Signal Extent   5.0 Noise Smoothness 3.0 

p = 0.000252 z = 3.48 

4 

B&H: Varying Signal Extent 



Signal Intensity 3.0 Signal Extent   9.5 Noise Smoothness 3.0 

p = 0.001628 z = 2.94 

5 

B&H: Varying Signal Extent 



Signal Intensity 3.0 Signal Extent 16.5 Noise Smoothness 3.0 

p = 0.007157 z = 2.45 

6 

B&H: Varying Signal Extent 



Signal Intensity 3.0 Signal Extent 25.0 Noise Smoothness 3.0 

p = 0.019274 z = 2.07 

7 

B&H: Varying Signal Extent 



Benjamini & Hochberg: Properties 

• Adaptive 

– Larger the signal, the lower the threshold 

– Larger the signal, the more false positives 

• False positives constant as fraction of 
rejected tests 

• Not a problem with imaging’s sparse 
signals 

• Smoothness OK 

– Smoothing introduces positive correlations 
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Topological inference 
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Topological feature: 
Peak height 

space 

Peak level inference 



Topological inference 
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Topological feature: 
Cluster extent 

Cluster level inference 

space 

uclus 

uclus : cluster-forming threshold 

You MUST use a sufficiently high cluster-
forming threshold uclus, i.e. punc < .001  



Topological inference 
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Topological feature: 
Number of clusters 

Set level inference 

uclus : cluster-forming threshold 

space 

uclus 

c 



Peak, cluster & set level inference 
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Peak level test: 

height of local maxima 

Cluster level test: 

spatial extent above u 

Set level test: 

number of clusters 

above u 

 

Sensitivity 

 

Regional 

specificity 

 

: significant at the set level 

: significant at the cluster level 

: significant at the peak level 

  L1 > spatial extent threshold 
  L2 < spatial extent threshold 



Levels of inference… 

Parameters 
u   - 3.09 

k   - 12  voxels 

S   - 323 voxels 

FWHM  - 4.7 voxels 

D   - 3 

n=82 

n=32 

n=12 

Omnibus 
P(c7 | n  0, t  3.09) = 0.031 

Set-level 
P(c  3 | n  12, t  3.09) = 0.019 

Cluster-level 
P(c  1 | n  82, t  3.09) = 0.029 (corrected) 
P(n  82 | t  3.09)  = 0.019 (uncorrected) 

Voxel-level 
P(c  1 | n  0, t  4.37) = 0.048 (corrected) 

P(t  4.37) = 1 - {4.37} < 0.001 (uncorrected) 

t=4.37 



Small volume correction 

If one has some a priori idea of where an activation 
should be, one can pre-specify a small search space 
and make the appropriate correction instead of 
having to control for the entire search space 

– mask defined  by (probabilistic) anatomical atlases 

– mask defined by separate "functional localisers" 

– mask defined by orthogonal contrasts 

– search volume around previously reported coordinates 
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With no prior hypothesis: 
1. Test whole volume. 
2. Identify SPM peak.  
3. Then make a test assuming a single voxel. 



Small Volume Correction 

SVC = correction for multiple comparison in a 
user’s defined volume ‘of interest’. 

Shape and size of 
volume become 
important for small or 
oddly shaped volume ! 

Example of  SVC (900 voxels) 

• compact volume: samples 

from maximum 16 resels 

• spread volume: sample 

from up to 36 resels 
 threshold higher for 

spread volume than 
compact volume. 



Small volume correction, topology 

48 FWHM=20mm 
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Non-parametric permutation test 

• Parametric methods 

– Assume distribution of 
statistic under null 
hypothesis 

 

 

• Nonparametric methods 

– Use data to find  
distribution of statistic 
under null hypothesis 

– Any statistic! 
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Permutation Test : Toy Example 

• Data from V1 voxel in visual stim. experiment 
A: Active, flashing checkerboard   B: Baseline, fixation 

6 blocks, ABABAB     Just consider block averages... 

 

 

 

• Null hypothesis Ho  
– No experimental effect, A & B labels arbitrary 

• Statistic 
– Mean difference  

A B A B A B 

103.00 90.48 99.93 87.83 99.76 96.06 



Permutation Test : Toy Example 

• Under Ho 

– Consider all equivalent relabelings 

 

AAABBB ABABAB BAAABB BABBAA 

AABABB ABABBA BAABAB BBAAAB 

AABBAB ABBAAB BAABBA BBAABA 

AABBBA ABBABA BABAAB BBABAA 

ABAABB ABBBAA BABABA BBBAAA 



Permutation Test : Toy Example 

• Under Ho 

– Consider all equivalent relabelings 

– Compute all possible statistic values 

AAABBB   4.82 ABABAB   9.45 BAAABB  -1.48 BABBAA  -6.86 

AABABB  -3.25 ABABBA   6.97 BAABAB   1.10 BBAAAB   3.15 

AABBAB  -0.67 ABBAAB   1.38 BAABBA  -1.38 BBAABA   0.67 

AABBBA  -3.15 ABBABA  -1.10 BABAAB  -6.97 BBABAA   3.25 

ABAABB   6.86 ABBBAA   1.48 BABABA  -9.45 BBBAAA  -4.82 



Permutation Test : Toy Example 

• Under Ho 

– Consider all equivalent relabelings 

– Compute all possible statistic values 

– Find 95%ile of permutation distribution 

AAABBB   4.82 ABABAB   9.45 BAAABB  -1.48 BABBAA  -6.86 

AABABB  -3.25 ABABBA   6.97 BAABAB   1.10 BBAAAB   3.15 

AABBAB  -0.67 ABBAAB   1.38 BAABBA  -1.38 BBAABA   0.67 

AABBBA  -3.15 ABBABA  -1.10 BABAAB  -6.97 BBABAA   3.25 

ABAABB   6.86 ABBBAA   1.48 BABABA  -9.45 BBBAAA  -4.82 



Permutation Test : Toy Example 

• Under Ho 

– Consider all equivalent relabelings 

– Compute all possible statistic values 

– Find 95%ile of permutation distribution 



Permutation Test : Toy Example 

• Under Ho 

– Consider all equivalent relabelings 

– Compute all possible statistic values 

– Find 95%ile of permutation distribution 

AAABBB   4.82 ABABAB   9.45 BAAABB  -1.48 BABBAA  -6.86 

AABABB  -3.25 ABABBA   6.97 BAABAB   1.10 BBAAAB   3.15 

AABBAB  -0.67 ABBAAB   1.38 BAABBA  -1.38 BBAABA   0.67 

AABBBA  -3.15 ABBABA  -1.10 BABAAB  -6.97 BBABAA   3.25 

ABAABB   6.86 ABBBAA   1.48 BABABA  -9.45 BBBAAA  -4.82 



Controlling FWER: Permutation Test 

• Parametric methods 

– Assume distribution of 
max statistic under null 
hypothesis 

 

• Nonparametric methods 

– Use data to find  
distribution of max statistic 
under null hypothesis 

– Again, any max statistic! 



Permutation Test & Exchangeability 

• Exchangeability is fundamental 

– Def: Distribution of the data unperturbed by permutation 

– Under H0, exchangeability justifies permuting data 

– Allows us to build permutation distribution 

 

• Subjects are exchangeable 

– Under Ho, each subject’s A/B labels can be flipped 

 

• Are fMRI scans exchangeable under Ho? 

– If no signal, can we permute over time? 



Permutation Test & Exchangeability 

• fMRI scans are not exchangeable 

– Permuting disrupts order, temporal autocorrelation 

 

• Intrasubject fMRI permutation test 

– Must decorrelate data, model before permuting 

– What is correlation structure? 

• Usually must use parametric model of correlation 

– E.g. Use wavelets to decorrelate 

• Bullmore et al 2001, HBM 12:61-78 

 

• Intersubject fMRI permutation test 

– Create difference image for each subject 

– For each permutation, flip sign of some subjects 



Permutation Test : Example 

• fMRI Study of Working Memory    

– 12 subjects, block design  Marshuetz et al (2000) 

– Item Recognition 

• Active:View five letters, 2s pause, 
 view probe letter, respond 

• Baseline: View XXXXX, 2s pause, 
 view Y or N, respond 

• Second Level RFX 

– Difference image, A-B constructed 
for each subject 

– One sample, smoothed variance t test 

D 

yes UBKDA 

Active 

N 

no XXXXX 

Baseline 



Permutation Test : Example 

• Permute! 
– 212 = 4,096 ways to flip 12 A/B labels 

– For each, note maximum of t image 

 

Permutation Distribution 

Maximum  t 

Maximum Intensity Projection 

Thresholded t 



t11 Statistic, RF & Bonf. Threshold t11 Statistic, Nonparametric Threshold 

uRF   = 9.87 
uBonf = 9.80 
5 sig. vox.  

uPerm = 7.67  
58 sig. vox. 

Test Level vs. t11 Threshold 

•Compare with Bonferroni 
  = 0.05/110,776 

•Compare with parametric RFT 
 110,776  222mm voxels 
 5.15.86.9mm FWHM 
    
 smoothness 
 462.9 RESELs 



  t Threshold 
(0.05 Corrected) 

 df RF Bonf Perm 

Verbal Fluency 4 4701.32 42.59 10.14 
Location Switching 9 11.17 9.07 5.83 
Task Switching 9 10.79 10.35 5.10 
Faces: Main Effect 11 10.43 9.07 7.92 
Faces: Interaction 11 10.70 9.07 8.26 
Item Recognition 11 9.87 9.80 7.67 
Visual Motion 11 11.07 8.92 8.40 
Emotional Pictures 12 8.48 8.41 7.15 
Pain: Warning 22 5.93 6.05 4.99 
Pain: Anticipation 22 5.87 6.05 5.05 

 

Generalization: RFT vs Bonf. vs Perm. 



RFT vs Bonf. vs Perm. 

  No. Significant Voxels 
(0.05 Corrected) 

  t  
 df RF Bonf Perm  

Verbal Fluency 4 0 0 0  
Location Switching 9 0 0 158  
Task Switching 9 4 6 2241  
Faces: Main Effect 11 127 371 917  
Faces: Interaction 11 0 0 0  
Item Recognition 11 5 5 58  
Visual Motion 11 626 1260 1480  
Emotional Pictures 12 0 0 0  
Pain: Warning 22 127 116 221  
Pain: Anticipation 22 74 55 182  

 



Content 

• Introduction 
 

• Family-wise error rate (FWER) 
 

• False discovery rate (FDR) 
 

• Levels of inference in SPM 
 

• Non-parametric permutation test 
 

• Conclusion 
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• Don’t threshold, model the signal! 

– Signal location? 

• Estimates and CI’s on 
(x,y,z) location 

– Signal magnitude? 

• CI’s on % change 

– Spatial extent? 

• Estimates and CI’s on activation volume 

• Robust to choice of cluster definition 

• ...but this requires an explicit spatial 
model 

What we’d like 

space 

Loc.̂
q̂Ext.

q̂Mag.



Real-life inference: What we get 

• Signal location 

– Local maximum  –  no inference 

– Center-of-mass  –  no inference 

• Sensitive to blob-defining-threshold 

• Signal magnitude 

– Local maximum intensity  –  P-values (& CI’s) 

• Spatial extent 

– Cluster volume  –  P-value, no CI’s 
• Sensitive to blob-defining-threshold 



FWER vs. FDR 

 

You MUST account for multiplicity 

(Otherwise have a fishing expedition) 

 

• FWER 

– Very specific, not very sensitive 

 

• FDR 

– Less specific, more sensitive 

(Sociological calibration still underway) 

 



Conclusion 

 

• There is a multiple testing problem and 
corrections must be applied on p-values, possibly 
for the volume of interest only (see SVC). 
 

• Inference is made about topological features 
(peak height, spatial extent, number of clusters). 
Use results from the Random Field Theory.  
Or permutation tests. 
 

• Control of FWER (probability of a false positive 
anywhere in the image) for a space of any 
dimension and shape. 
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• And now a little demo! 
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