Introduction à la statistique médicale

Statistical Parametric Mapping short course

Course 4:

Multiple comparison problem

 \& levels of inferenceChristophe Phillips, Ir PhD
GIGA - CRC In Vivo Imaging \&
GIGA - In Silico Medicine
image data

Statistical Parametric Map

General Linear Model

- model fitting
- statistic image
corrected p-values

correction for multiple comparisons

Content

- Introduction
- Family-wise error rate (FWER)
- False discovery rate (FDR)
- Levels of inference in SPM
- Non-parametric permutation test
- Conclusion

Content

- Introduction
- Single voxel inference
- Multiple comparison problem
- Family-wise error rate (FWER)
- False discovery rate (FDR)
- Levels of inference in SPM
- Non-parametric permutation test
- Conclusion

Single voxel inference

Null Hypothesis $\mathbf{H}_{\mathbf{0}}$: zero activation

Decision rule (threshold) u : determines false positive rate α
\Rightarrow Choose u to give acceptable α under H_{0}

Null distribution of test statistic T

$$
\alpha=p\left(t>u \mid H_{0}\right)
$$

Classical hypothesis testing...

- Null hypothesis H
- test statistic
- null distributions
- Hypothesis test
- control Type I error
- incorrectly reject H
- test level α
- $\operatorname{Pr}($ "reject" $H \mid H) \leq \alpha$
- p-value
- min α at which H rejected
- $\operatorname{Pr}(T \geq t \mid H)$
- characterising "surprise"
t-distribution, 32 df .

F-distribution, $(10,32) \mathrm{df}$.

Sensitivity \& specificity

ACTION

		Don't reject	Reject
	H_{0} true	True Negative	False Positive
	H_{0} false	False Negative	True Positive

Sensitivity $=T P /(T P+F N)=\beta$
Specificity $=T N /(T N+F P)=1-\alpha$
$\mathrm{FP}=$ Type I error or 'error'
FN = Type II error
$\alpha=\mathrm{p}$-value/FP rate/error rate/significance level
$\beta=$ power

Multiple tests

Signal

Multiple tests

If we have 100000 voxels, $\alpha=0.05$
$\Rightarrow \mathbf{5 0 0 0}$ false positive voxels.
This is clearly undesirable!
Need to define a null hypothesis for a collection of tests.

Noisy data

Use of 'uncorrected' p-value, $\alpha=0.1$

11.3\%

$12.5 \% \quad 10.8 \% \quad 11.5 \% \quad 10.0 \% \quad 10.7 \% \quad 11.2 \% \quad 10.2 \%$ Percentage of Null Pixels that are False Positives

Assessing statistics images

Where's the signal?

High Threshold

Good Specificity
Poor Power
(risk of false negatives)

Med. Threshold

Poor Specificity (risk of false positives)

Good Power

Content

- Introduction
- Family-wise error rate (FWER)
- Family-wise Null hypothesis
- Bonferroni correction
- Random Field Theory
- False discovery rate (FDR)
- Levels of inference in SPM
- Non-parametric permutation test
- Conclusion

Family-Wise Null Hypothesis

Family-Wise Null Hypothesis: Activation is zero everywhere

If we reject a voxel null hypothesis at any voxel, we reject the family-wise Null hypothesis

A FP anywhere in the image gives a Family Wise Error (FWE)
Family-Wise Error rate (FWER) = 'corrected' p-value

Bonferroni correction

The Family-Wise Error rate (FWER), $\alpha_{\text {FWE, }}$ for a family of N tests follows the inequality:

$$
\alpha_{F W E} \leq N \alpha
$$

where α is the test-wise error rate.
Therefore, to ensure a particular FWER choose:

$$
\alpha=\frac{\alpha_{F W E}}{N}
$$

This correction does not require the tests to be independent but becomes very stringent if dependence.

Bonferroni correction, example

- Experiment with $\mathrm{N}=100000$ independent voxels and 40 d.f.
- $\mathrm{v}=$ unknown corrected probability threshold,
- find v such that family-wise error rate $\alpha=0.05$
- Bonferroni correction:
- probability that all tests are below the threshold,
- use $v=\alpha / N$
- here $v=0.05 / 100000=0.0000005$
\Rightarrow threshold $t=5.77$
- Interpretation:

Bonferroni procedure gives a corrected p-value,
i.e. for a t statistics $=5.77$,

- uncorrectd p value $=0.0000005$
- corrected p value $=0.05$

Bonferroni \& independent observations

100 by 100 voxels.
10000 independent measures
Fix the P FWE $=0.05, z$ threshold ?
Bonferroni:

$$
\begin{aligned}
v=0.05 / 10000 & =0.000005 \\
& \Rightarrow \text { threshold } z
\end{aligned}=4.42
$$

100 by 100 voxels.
100 independent measures
Fix the $P F W E=0.05, z$ threshold ?
Bonferroni:
$v=0.05 / 100=0.0005$
\Rightarrow threshold $z=3.29$
$v=\alpha / n_{i}$ where n_{i} is the number of independent observations.

Bonferroni \& independent observations

100 by 100 voxels.
10000 independent measures
Fix the PFWE $=0.05, z$ threshold ?

100 by 100 voxels. How many independent measures ???

Bonferroni:

$$
\begin{aligned}
v=0.05 / 10000 & =0.000005 \\
& \Rightarrow \text { threshold } z=4.42
\end{aligned}
$$

Random Field Theory

\Rightarrow Consider a statistic image as a discretisation of a continuous underlying random field.
\Rightarrow Use results from continuous random field theory.

RFT and Euler Characteristic

Euler Characteristic χ_{u} :

- Topological measure $\chi_{u}=$ \# blobs - \# holes
- at high threshold u :
$\chi_{u}=$ \# blobs

$$
\begin{aligned}
F W E R= & p(F W E) \\
& \approx E\left[\chi_{u}\right]
\end{aligned}
$$

Euler characteristic...

Threshold z-map

Smoothed image thresholded at $Z>2.5$

Threshold z-map at 2.75

Expected Euler Characteristic

2D Gaussian Random Field

100×100 Gaussian Random Field with FWHM $=10$ smoothing $\alpha_{F W E}=0.05 \Rightarrow u_{R F T}=3.8$
($u_{\text {BONF }}=4.42, u_{\text {uncorr }}=1.64$)

Smoothness

Smoothness parameterised in terms of FWHM:

Size of Gaussian kernel required to smooth i.i.d. noise to have same smoothness as observed null (standardized) data.

RESELS (Resolution Elements):

1 RESEL $=F W H M_{x} F W H M_{y} F W H M_{z}$
RESEL Count $R=$ volume of search region in units of smoothness

Eg: 10 voxels, 2.5 FWHM, 4 RESELS

The number of resels is similar, but not identical to the number independent observations.
Smoothness estimated from spatial derivatives of standardised residuals:
Yields an RPV image containing local roughness estimation.

RFT intuition

Corrected p-value for statistic value t

$$
\begin{aligned}
p_{c} & =p(\max T>t) \\
& \approx E\left[\chi_{t}\right] \\
& \propto \lambda(\Omega)|\Lambda|^{1 / 2} t \exp \left(-t^{2} / 2\right)
\end{aligned}
$$

- Statistic value t increases ?
- p_{c} decreases (better signal)
- Search volume increases $(\lambda(\Omega) \uparrow)$?
- p_{c} increases (more severe correction)
- Smoothness increases $\left(|\Lambda|^{1 / 2} \downarrow\right)$?
- p_{c} decreases (less severe correction)

RFT, unified theory

General form for expected Euler characteristic

$t, F \& \chi^{2}$ fields \cdot restricted search regions $~ D$ dimensions

$$
E\left[\chi_{u}(\Omega)\right]=\sum_{d=0}^{D} R_{d}(\Omega) \rho_{d}(u)
$$

$\mathrm{R}_{d}(\Omega)$: d-dimensional Lipschitz-Killing curvatures of Ω (\approx intrinsic volumes):

- function of dimension, space Ω and smoothness:
$\mathrm{R}_{0}(\Omega)=\chi(\Omega)$ Euler characteristic of Ω
$\mathrm{R}_{1}(\Omega)=$ resel diameter
$R_{2}(\Omega)=$ resel surface area
$\mathrm{R}_{3}(\Omega)=$ resel volume
$\rho_{d}(\mathrm{u}): d$-dimensional EC density of the field - function of dimension and threshold, specific for RF type:
E.g. Gaussian RF:

$$
\begin{aligned}
& \rho_{0}(u)=1-\Phi(u) \\
& \rho_{1}(u)=(4 \ln 2)^{1 / 2} \exp \left(-u^{2} / 2\right) /(2 \pi) \\
& \rho_{2}(u)=(4 \ln 2) \quad \mathrm{u} \quad \exp \left(-u^{2} / 2\right) /(2 \pi)^{3 / 2} \\
& \rho_{3}(u)=(4 \ln 2)^{3 / 2}\left(u^{2}-1\right) \quad \exp \left(-u^{2} / 2\right) /(2 \pi)^{2} \\
& \rho_{4}(u)=(4 \ln 2)^{2} \quad\left(u^{3}-3 u\right) \exp \left(-u^{2} / 2\right) /(2 \pi)^{5 / 2}
\end{aligned}
$$

Estimated component fields

estimate

Each row is an estimated component field

Smoothness, PRF, ResEls...

- Smoothness $\sqrt{ }|\Lambda|$
- variance-covariance matrix of partial derivatives (possibly location dependent)

$$
\Lambda=\left(\begin{array}{ccc}
\operatorname{var}\left[\frac{\partial e}{\partial x}\right] & \operatorname{cov}\left[\frac{\partial e}{\partial x}, \frac{\partial e}{\partial y}\right] & \operatorname{cov}\left[\frac{\partial e}{\partial x}, \frac{\partial e}{\partial z}\right] \\
\operatorname{cov}\left[\frac{\partial e}{\partial x}, \frac{\partial e}{\partial y}\right] & \operatorname{var}\left[\frac{\partial e}{\partial y}\right] & \operatorname{cov}\left[\frac{\partial e}{\partial y}, \frac{\partial e}{\partial z}\right] \\
\operatorname{cov}\left[\frac{\partial e}{\partial x}, \frac{\partial e}{\partial z}\right] & \operatorname{cov}\left[\frac{\partial e}{\partial y}, \frac{\partial e}{\partial z}\right] & \operatorname{var}\left[\frac{\partial e}{\partial z}\right]
\end{array}\right)
$$

- Point Response Function PRF

- Full Width at Half Maximum FWHM Approximate the peak of the Covariance function with a Gaussian
- Gaussian PRF
- Σ - kernel var/cov matrix
- ACF 2Σ
- $\Lambda=(2 \Sigma)^{-1}$
$\Rightarrow F W H M \mathrm{f}=\sigma \sqrt{ }(8 \ln (2))$
$-\Sigma=\left[\begin{array}{lll}f_{x} & 0 & 0 \\ 0 & f_{y} & 0 \\ 0 & 0 & f_{z}\end{array}\right] \sin (2)$
ignoring covariances
$\Rightarrow \sqrt{ }|\Lambda|=(4 \ln (2))^{3 / 2} /\left(f_{x} \times f_{y} \times f_{z}\right)$
- Resolution Element (ResEl)
- Resel dimensions ($f_{x} \times f_{y} \times f_{z}$)
$-R_{3}(\Omega)=\lambda(\Omega) /\left(f_{x} \times f_{y} \times f_{z}\right)$
if strictly stationary

$$
\begin{aligned}
& \mathrm{E}\left[\chi\left(\mathrm{~A}_{u}\right)\right]=\mathrm{R}_{3}(\Omega)(4 \ln (2))^{3 / 2}\left(u^{2}-1\right) \exp \left(-u^{2} / 2\right) \\
& \approx \mathrm{R}_{3}(\Omega)(1-\Phi(u)) \\
& \text { for high thresholds } u
\end{aligned}
$$

RFT assumptions

- The statistic image is assumed to be a good lattice representation of an underlying random field with a multivariate Gaussian distribution.
- These fields are continuous, with an autocorrelation function twice differentiable at the origin.
$>$ The threshold chosen to define clusters is high enough such that the expected EC is a good approximation to the number of clusters.
> The lattice approximation is reasonable, which implies the smoothness is relatively large compared to the voxel size.
$>$ The errors of the specified statistical model are normally distributed, which implies the model is not misspecified.
- Smoothness of the data is unknown and estimated: very precise estimate by pooling over voxels \Rightarrow stationarity assumption.

Content

- Introduction
- Family-wise error rate (FWER)
- False discovery rate (FDR)
- Levels of inference in SPM
- Non-parametric permutation test
- Conclusion

FDR illustration:

Signal

Signal+Noise

Control of Per Comparison Rate at 10\%

Control of Familywise Error Rate at 10\%

FWE
Occurrence of Familywise Error
Control of False Discovery Rate at 10\%

Benjamini \& Hochberg Procedure

- Select desired limit α on E(FDR)
- Order p -values, $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(v)}$
- Let r be largest i such that

$$
p_{(i)} \leq i / V^{*} \alpha
$$

- Reject all hypotheses corresponding to
$p_{(1)}, \ldots, p_{(r)}$.

B\&H: Varying Signal Extent

$$
p=
$$

$$
z=
$$

Signal Intensity 3.0
Signal Extent 1.0
Noise Smoothness 3.0

B\&H: Varying Signal Extent

$$
p=
$$

$$
z=
$$

Signal Intensity 3.0 Signal Extent 2.0 Noise Smoothness 3.0

B\&H: Varying Signal Extent

$$
p=
$$

$$
z=
$$

Signal Intensity 3.0
Signal Extent 3.0
Noise Smoothness 3.0

B\&H: Varying Signal Extent

$$
p=0.000252 \quad z=3.48
$$

Signal Intensity 3.0 Signal Extent 5.0 Noise Smoothness 3.0

B\&H: Varying Signal Extent

$$
p=0.001628 \quad z=2.94
$$

Signal Intensity 3.0
Signal Extent 9.5 Noise Smoothness 3.0

B\&H: Varying Signal Extent

$$
p=0.007157 \quad z=2.45
$$

Signal Intensity 3.0 Signal Extent16.5 Noise Smoothness 3.0

B\&H: Varying Signal Extent

$$
p=0.019274 \quad z=2.07
$$

Signal Intensity 3.0 Signal Extent25.0 Noise Smoothness 3.0

Benjamini \& Hochberg: Properties

- Adaptive
- Larger the signal, the lower the threshold
- Larger the signal, the more false positives
- False positives constant as fraction of rejected tests
- Not a problem with imaging' s sparse signals
- Smoothness OK
- Smoothing introduces positive correlations

Content

- Introduction
- Family-wise error rate (FWER)
- False discovery rate (FDR)
- Levels of inference in SPM
- Topological inference
- Small volume correction
- Non-parametric permutation test
- Conclusion

Topological inference

Peak level inference

人ұ!suəұu!

Topological feature:

 Peak height
Topological inference

Cluster level inference

त
$\stackrel{\text { n }}{ \pm}$
\pm
\pm

Topological feature:

 Cluster extent$u_{\text {clus }}:$ cluster-forming threshold

You MUST use a sufficiently high clusterforming threshold $\mathrm{u}_{\text {clus }}$ i.e. $\mathrm{p}_{\text {unc }}<.001$

Topological inference

Set level inference

Peak, cluster \& set level inference

Sensitivity

[^0]Regional specificity

Peak level test: height of local maxima

Cluster level test: spatial extent above u

Set level test: number of clusters above u

Levels of inference...

Voxel-level
$\mathrm{P}(\mathrm{c} \geq 1 \mid \mathrm{n} \geq 0, \mathrm{t} \geq 4.37)=0.048$ (corrected) $\mathrm{P}(t \geq 4.37)=1-\Phi\{4.37\}<0.001$ (uncorrected)

$\mathrm{P}(\mathrm{c} \geq 1 \mid \mathrm{n} \geq 82, \mathrm{t} \geq 3.09)=0.029$ (corrected) $\mathrm{P}(\mathrm{n} \geq 82 \mid \mathrm{t} \geq 3.09)=0.019$ (uncorrected)

Omnibus

$\mathrm{P}(\mathrm{c} \geq 7 \mid \mathrm{n} \geq 0, \mathrm{t} \geq 3.09)=0.031$

Set-level
$\mathrm{P}(\mathrm{c} \geq 3 \mid \mathrm{n} \geq 12, \mathrm{t} \geq 3.09)=0.019$

Parameters

u	-3.09
k	-12 voxels
S	-32^{3} voxels
$F W H M$	-4.7 voxels
D	-3

Small volume correction

If one has some a priori idea of where an activation should be, one can pre-specify a small search space and make the appropriate correction instead of having to control for the entire search space

- mask defined by (probabilistic) anatomical atlases
- mask defined by separate "functional localisers"
- mask defined by orthogonal contrasts
- search volume around previously reported coordinates

Small Volume Correction

SVC = correction for multiple comparison in a user's defined volume 'of interest'.

Shape and size of volume become important for small or oddly shaped volume!

Example of SVC (900 voxels)

- compact volume: samples from maximum 16 resels
- spread volume: sample from up to 36 resels
\Rightarrow threshold higher for spread volume than compact volume.

Small volume correction, topology

Table 3. Representative examples of resel counts and critical values.

	Vol.	Resel counts					t for $\mathrm{P}(M \geq t)=$		
Search region V	(cc)	$R_{0}(V)$	$R_{1}(V)$	$R_{2}(V)$	$R_{3}(V)$	0.10	0.05	0.01	
Single voxel	0	1	0	0	0	1.28	1.64	2.33	
Head Of Caudate	7	0	6.18	4.63	0.65	2.75	3.02	3.55	
Putamen	12	1	7.32	6.80	1.18	2.89	3.15	3.66	
Globus Pallidus	3	0	4.03	2.29	0.24	2.49	2.78	3.35	
Thalamus	11	1	4.94	5.14	1.13	2.79	3.05	3.59	
Anterior Cingulate Gyrus	9	1	8.20	5.79	0.86	2.86	3.11	3.63	
Posterior Cingulate Gyrus	6	1	5.32	3.85	0.58	2.70	2.97	3.51	
Cingulate Gyri	15	0	12.89	9.63	1.44	3.03	3.27	3.77	
Superior Frontal Gyrus	80	1	15.64	25.69	8.97	3.38	3.60	4.07	
Middle Frontal Gyrus	57	1	14.89	21.14	6.23	3.31	3.53	4.00	
Inferior Frontal Gyrus	37	1	11.22	14.25	4.06	3.17	3.41	3.89	
Precentral Gyrus	32	1	12.30	14.23	3.40	3.16	3.40	3.88	
Frontal Gyri	207	1	19.30	53.39	23.63	3.63	3.84	4.28	
Occipital Lobe	65	-1	10.68	23.11	7.17	3.32	3.55	4.02	
4mm shell	254	2	0.54	207.27	15.88	3.85	4.04	4.45	
Whole brain	1294	1	20.43	107.09	153.42	4.05	4.23	4.63	

Content

- Introduction
- Family-wise error rate (FWER)
- False discovery rate (FDR)
- Levels of inference in SPM
- Non-parametric permutation test
- Conclusion

Non-parametric permutation test

- Parametric methods
- Assume distribution of statistic under null hypothesis

- Nonparametric methods
- Use data to find distribution of statistic under null hypothesis
- Any statistic!

Nonparametric Null Distribution

Permutation Test : Toy Example

- Data from V1 voxel in visual stim. experiment A: Active, flashing checkerboard B: Baseline, fixation 6 blocks, ABABAB Just consider block averages...

A	B	A	B	A	B
103.00	90.48	99.93	87.83	99.76	96.06

- Null hypothesis H_{0}
- No experimental effect, A \& B labels arbitrary
- Statistic
- Mean difference

Permutation Test : Toy Example

- Under H_{0}
- Consider all equivalent relabelings

AAABBB	ABABAB	BAAABB	BABBAA
AABABB	ABABBA	BAABAB	BBAAAB
AABBAB	ABBAAB	BAABBA	BBAABA
AABBBA	ABBABA	BABAAB	BBABAA
ABAABB	ABBBAA	BABABA	BBBAAA

Permutation Test : Toy Example

- Under H_{0}
- Consider all equivalent relabelings
- Compute all possible statistic values

AAABBB	4.82	ABABAB	9.45	BAAABB	$\mathbf{- 1 . 4 8}$	BABBAA	-6.86
AABABB	-3.25	ABABBA	6.97	BAABAB	1.10	BBAAAB	3.15
AABBAB	-0.67	ABBAAB	1.38	BAABBA	$\mathbf{- 1 . 3 8}$	BBAABA	0.67
AABBBA	$-\mathbf{- 3 . 1 5}$	ABBABA	$\mathbf{- 1 . 1 0}$	BABAAB	-6.97	BBABAA	3.25
ABAABB	6.86	ABBBAA	1.48	BABABA	$\mathbf{- 9 . 4 5}$	BBBAAA	$\mathbf{- 4 . 8 2}$

Permutation Test : Toy Example

- Under H_{0}
- Consider all equivalent relabelings
- Compute all possible statistic values
- Find 95\%ile of permutation distribution

AAABBB	4.82	ABABAB	9.45	BAAABB	$\mathbf{- 1 . 4 8}$	BABBAA	-6.86
AABABB	-3.25	ABABBA	6.97	BAABAB	1.10	BBAAAB	3.15
AABBAB	-0.67	ABBAAB	1.38	BAABBA	$\mathbf{- 1 . 3 8}$	BBAABA	0.67
AABBBA	-3.15	ABBABA	$\mathbf{- 1 . 1 0}$	BABAAB	-6.97	BBABAA	3.25
ABAABB	6.86	ABBBAA	1.48	BABABA	$\mathbf{- 9 . 4 5}$	BBBAAA	$\mathbf{- 4 . 8 2}$

Permutation Test : Toy Example

- Under H_{0}
- Consider all equivalent relabelings
- Compute all possible statistic values
- Find 95\%ile of permutation distribution

Permutation Test : Toy Example

- Under H_{0}
- Consider all equivalent relabelings
- Compute all possible statistic values
- Find 95\%ile of permutation distribution

AAABBB	4.82	ABABAB	9.45	BAAABB	$\mathbf{- 1 . 4 8}$	BABBAA	-6.86
AABABB	-3.25	ABABBA	6.97	BAABAB	1.10	BBAAAB	3.15
AABBAB	-0.67	ABBAAB	1.38	BAABBA	$\mathbf{- 1 . 3 8}$	BBAABA	0.67
AABBBA	-3.15	ABBABA	-1.10	BABAAB	-6.97	BBABAA	3.25
ABAABB	6.86	ABBBAA	1.48	BABABA	$\mathbf{- 9 . 4 5}$	BBBAAA	$\mathbf{- 4 . 8 2}$

Controlling FWER: Permutation Test

- Parametric methods
- Assume distribution of max statistic under null hypothesis

- Nonparametric methods
- Use data to find distribution of max statistic under null hypothesis
- Again, any max statistic!

Nonparametric Null Max Distribution

Permutation Test \& Exchangeability

- Exchangeability is fundamental
- Def: Distribution of the data unperturbed by permutation
- Under H_{0}, exchangeability justifies permuting data
- Allows us to build permutation distribution
- Subjects are exchangeable
- Under H_{o}, each subject's A/B labels can be flipped
- Are fMRI scans exchangeable under H_{0} ?
- If no signal, can we permute over time?

Permutation Test \& Exchangeability

- fMRI scans are not exchangeable
- Permuting disrupts order, temporal autocorrelation
- Intrasubject fMRI permutation test
- Must decorrelate data, model before permuting
- What is correlation structure?
- Usually must use parametric model of correlation
- E.g. Use wavelets to decorrelate
- Bullmore et al 2001, HBM 12:61-78
- Intersubject fMRI permutation test
- Create difference image for each subject
- For each permutation, flip sign of some subjects

Permutation Test : Example

- fMRI Study of Working Memory
- 12 subjects, block design Marshuetz et al (2000)
- Item Recognition
- Active:View five letters, 2s pause, view probe letter, respond
- Baseline: View XXXXX, 2s pause,
view Y or N, respond
- Second Level RFX
- Difference image, A-B constructed for each subject
- One sample, smoothed variance t test

Permutation Test : Example

- Permute!
$-2^{12}=4,096$ ways to flip 12 A/B labels
- For each, note maximum of t image

Permutation Distribution Maximum t

Maximum Intensity Projection Thresholded t

$u^{\text {Perm }}=7.67$
58 sig. vox.
t_{11} Statistic, Nonparametric Threshold

Test Level vs. t_{11} Threshold

- Compare with Bonferroni
- Compare with parametric RFT
$110,7762 \times 2 \times 2 \mathrm{~mm}$ voxels $5.1 \times 5.8 \times 6.9 \mathrm{~mm}$ FWHM
smoothness 462.9 RESELs

$$
\alpha=0.05 / 110,776
$$

t_{11} Statistic, RF \& Bonf. Threshold

$$
\begin{aligned}
& u^{u^{\mathrm{RF}}=9.87} \\
& u^{\text {Bonf }}=9.80 \\
& 5 \text { sig. vox. }
\end{aligned}
$$

Generalization: RFT vs Bonf. vs Perm.

		t Threshold		
	df	(0.05 Corrected)		
		Bonf	Perm	
Verbal Fluency	4	4701.32	42.59	10.14
Location Switching	9	11.17	9.07	5.83
Task Switching	9	10.79	10.35	5.10
Faces: Main Effect	11	10.43	9.07	7.92
Faces: Interaction	11	10.70	9.07	8.26
Item Recognition	11	9.87	9.80	7.67
Visual Motion	11	11.07	8.92	8.40
Emotional Pictures	12	8.48	8.41	7.15
Pain: Warning	22	5.93	6.05	4.99
Pain: Anticipation	22	5.87	6.05	5.05

RFT vs Bonf. vs Perm.

| | | No. Significant Voxels | | |
| :--- | :---: | ---: | ---: | ---: | ---: |
| $(0.05$ | Corrected) | | | |

Content

- Introduction
- Family-wise error rate (FWER)
- False discovery rate (FDR)
- Levels of inference in SPM
- Non-parametric permutation test
- Conclusion

What we' d like

- Don't threshold, model the signal!
- Signal location?
- Estimates and CI's on (x, y, z) location
- Signal magnitude?
- CI's on \% change
- Spatial extent?

- Estimates and CI's on activation volume
- Robust to choice of cluster definition
- ...but this requires an explicit spatial model

Real-life inference: What we get

- Signal location
- Local maximum - no inference
- Center-of-mass - no inference
- Sensitive to blob-defining-threshold
- Signal magnitude
- Local maximum intensity - P-values (\& CI's)
- Spatial extent
- Cluster volume - P-value, no CI's
- Sensitive to blob-defining-threshold

FWER vs. FDR

You MUST account for multiplicity
(Otherwise have a fishing expedition)

- FWER
- Very specific, not very sensitive
- FDR
- Less specific, more sensitive
(Sociological calibration still underway)

Conclusion

- There is a multiple testing problem and corrections must be applied on p-values, possibly for the volume of interest only (see SVC).
- Inference is made about topological features (peak height, spatial extent, number of clusters). Use results from the Random Field Theory. Or permutation tests.
- Control of FWER (probability of a false positive anywhere in the image) for a space of any dimension and shape.

References

Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Comparing functional (PET) images: the assessment of significant change. Journal of Cerebral Blood Flow and Metabolism, 1991.

Worsley KJ, Evans AC, Marrett S, Neelin P. A three-dimensional statistical analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow and Metabolism. 1992.

Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC. A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping,1996.

Chumbley J, Worsley KJ , Flandin G, and Friston KJ. Topological FDR for neuroimaging. NeuroImage, 2010.

Kilner J and Friston KJ. Topological inference for EEG and MEG data. Annals of Applied Statistics, 2010.
Flandin G and Friston KJ. Topological Inference. Brain Mapping: An Encyclopedic Reference, 2015.
Flandin G and Friston KJ. Analysis of family-wise error rates in statistical parametric mapping using random field theory. Human Brain Mapping, 2017.

- And now a little demo!

[^0]: $\mathrm{L}_{1}>$ spatial extent threshold
 L_{2} < spatial extent threshold

