
Good practices in scientific computing 

GIGA Doctorate School 

Christophe Phillips, Ir Ph.D. 



The scientific process 

Ideas  Hypotheses  Experiments  Data  Analysis  Comprehension  Dissemination 
 

What could go wrong? 

• bad idea 

• ill-formulated 
• no hypothesis 
• (X-ploratory) 

• flawed instrumentation 
• poor experimental design 
• inconsistent with hypothesis 

• software bugs 
• inappropriate use of methods 
• incl. P-hacking or  

“data dredging” 

• misinterpretation 
• extrapolation & HARKing 
• post-diction & “story telling” 

• publish anyway 
• many details missing 
• behind pay walls 



Science relies on (digital) data and their analysis. 

   use & write scientific software! 

Do we know 

▶ what we want?  Mostly yes. 

▶ how to calculate it?  We are working on it. 

▶ how to build the “tool”?  Usually done “as it flows”… 

   Software development best practices! 

Introduction 



Improve  

▶ productivity of scientific programming and  

▶ reliability of the resulting code 

 speed up result production  

 boost confidence in results 

 ensure results reproducibility 

 increase your scientific impact 

 

Goals 



Programmers vs. Users 



1. Write programs for people, not computers 
2. Let the computer do the work 
3. Make incremental changes 
4. Don’t repeat yourself or others 
5. Plan for mistakes 
6. Optimize software only after it works correctly 
7. Document design and purpose, not mechanics 
8. Collaborate 

Scientific computing best practices 

G. Wilson et al., “Best Practices for Scientific Computing”, PLOS Biology, 12:e1001745, 2014 



1. Write programs for people, not computers 
2. Let the computer do the work 
3. Make incremental changes 
4. Don’t repeat yourself or others 
5. Plan for mistakes 
6. Optimize software only after it works correctly 
7. Document design and purpose, not mechanics 
8. Collaborate 

Scientific computing best practices 

G. Wilson et al., “Best Practices for Scientific Computing”, PLOS Biology, 12:e1001745, 2014 

A 

A 

B 

B 

C 

C 

C 

D 



 

“A computer is like a mischievous genie.  

It will give you exactly what you ask for,  

but not always what you want.”  

- Joe Sondow 

Some wisdom 



1. Write programs for people 
7. Document design and purpose, not mechanics 

 

“Any code of your own that you haven't looked at for six or more 
months might as well have been written by someone else.” 

- Eagleson's law 

Real number more likely 3 weeks… 

Code & Document 



1. Write programs for people 
7. Document design and purpose, not mechanics 

▶ Make names consistent, distinctive, and meaningful. 

▶ Make code style, input/output and formatting consistent 

▶ Break programs up into “simple modules” 

▶ Document interfaces and reasons, not implementations  
(ideally 40% of file content!). 

 

Code & Document 



 

 

"Commenting your code is like cleaning your bathroom –  

you never want to do it, but it really does create  

a more pleasant experience for you and your guests."  

- Ryan Campbell 

Code & Document, more wisdom… 



2. Let the computer do the work 
4. Don’t repeat yourself or others 

▶ never change data manually! 
▶ do not type commands more than once 
▶ script code for a “re-do this” call 
▶ turn scripts into functions, with options/flags/parameters 
▶ modularize code rather than copy-pasting bits. 

Code & Automatize 



2. Let the computer do the work 
4. Don’t repeat yourself or others 

 

"DRY – Don’t Repeat Yourself  
Every piece of knowledge must have a single, unambiguous, 

authoritative representation within a system."  

- Andy Hunt & Dave Thomas 

Code & Automatize 



2. Let the computer do the work 
4. Don’t repeat yourself or others 

▶ never change data manually! 
▶ do not type commands more than once 
▶ script code for a “re-do this” call 
▶ turn scripts into functions, with options/flags/parameters 
▶ modularize code rather than copy-pasting bits. 
▶ re-use code instead of rewriting it. 

Code & Automatize 



https://twitter.com/wmvanvliet/status/1240907591791886337 
https://arxiv.org/abs/1904.06163   

https://twitter.com/wmvanvliet/status/1240907591791886337
https://arxiv.org/abs/1904.06163


2. Let the computer do the work 
4. Don’t repeat yourself or others 
 

“[Code reuse] saves a fair amount of coding, but much 
more important is consistency.”  

- Kernighan and Plauger 

Code & Automatize 



3. Make incremental changes 
5. Plan for mistakes 
8. Collaborate 

 

"Every program has 2 purposes: The one for which it was written 
and another for which it wasn't."  

- Alan J. Perlis 

Code & Develop 



3. Make incremental changes 
5. Plan for mistakes 
8. Collaborate 

 
▶ use a version control system. 
▶ put everything that has been created manually in version 

control. 
  keep track of changes: what, when, who & why! 

Remember last week? 

Code & Develop 



3. Make incremental changes 
5. Plan for mistakes 
8. Collaborate 

 

“If it hasn’t been tested, it doesn’t work.”  
- Eric Mason 

 

Code & Develop 



3. Make incremental changes 
5. Plan for mistakes 
8. Collaborate 

 
▶ automated testing of the code, in part or whole (unit, integration, 

regression tests) 

▶ like manuscript writing, have colleagues review the code 
and/or write the code together 

 

Code & Develop 



Errors come in (at least) 2 forms: 

▶ “code crash”  obvious & can be caught 

▶ “wrong results”  difficult to spot! 

“Debugging time increases as a square of the program’s size.”  
- Chris Wenham 

“Debugging is like being the detective in a crime movie  
where you are also the murderer.”  

- Filipe Fortes 

Code & Develop 



6. Optimize software only after it works correctly. 

▶ Use a profiler to identify bottlenecks. 

▶ Write code in the highest-level language possible. 

 

"Make it correct, make it clear, make it concise, make it fast.  
In that order."  

– Wes Dyer 

 

Code & Optimization 



1. Write programs for people, not computers 
2. Let the computer do the work 
3. Make incremental changes 
4. Don’t repeat yourself or others 
5. Plan for mistakes 
6. Optimize software only after it works correctly 
7. Document design and purpose, not mechanics 
8. Collaborate 

Scientific computing best practices 

G. Wilson et al., “Best Practices for Scientific Computing”, PLOS Biology, 12:e1001745, 2014 



“I will sort and clean this data (code) right before we 
submit. Or for sure once this is published.”  

 
 
 

= “I only clean my teeth right before my dentist 
appointment.” 

 
 

What about the data? 



Things we want to spend time on: answering our scientific question. 

Things we don’t want to spend time on:  

● figure out how a dataset should be organized 

● organize the dataset  

● rewrite code because the data structure changed 

● digging into our data to write our methods section 

… and so, we rush ! 

“I have a grant proposal / grant report / PhD to finish!” 

“Haste makes waste” 



▶ “My data organization is as good as yours” 

▶ Only the main author(s) know(s) where is what, what is useful 
(or not), etc. until… 

▶ Not all the information gathered in one place 
  

 No error checking neither “memory” 

 Need specific batch/code to process the data 

 Not easy to re-use data or share with others 

Issues & solutions 



▶ “My data organization is as good as yours” 

▶ Only the main author(s) know(s) where is what, what is useful 
(or not), etc. until… 

▶ Not all the information gathered in one place 
  

 Be complete 

 Be consistent 

 Be careful 

Issues & solutions 

Data description is critical! 



▶ Bus factor of a project: 

“If you were hit by a bus, can one of your lab-mates resume your 

research where you left off with less than a week delay?” 

 

▶ Technical debt:  

“You’re taking a time-loan that you will have to pay back later. 

And you are not going to like the interest rate!”  

 

Ask yourself… 



▶ “Backup” your computer 
 

▶ Archive your data (or ensure they are…) 

 
▶ Version your code 

 
  Be able to reproduce your results from scratch ! 

Safety in 3 steps 



▶ “Backup” your computer  Dox / One Drive 
 

▶ Archive your data (or ensure they are…)  Mass-storage 
 

▶ Version your code  GitLab 
 

  Be able to reproduce your results from scratch ! 

Safety in 3 steps 



Reproducibility & similar notions 

DATA 

Same Different 

C
O

D
E Same Reproducible Replicable 

Different Robust Generalisable 



▶ Use open tools and format 

▶ When you publish your results, do not be afraid to 
- share your data 
- share your code 
- share your methodology 
- share your paper 

▶ Helping and being helped 

Open science 



Improve  

▶ productivity of scientific programming and  

▶ reliability of the resulting code 

 speed up result production  

 boost confidence in results 

 ensure results reproducibility 

 increase your scientific impact 

 

Goals 



▶ Looks scary… but just recommendations 

   adopt them incrementally 

▶ Do not be afraid, try and follow these tips 

   for EVERY bit of code written, data set used,  
   and analysis done. 

▶ Invest some time NOW  

   gain in the long term! 

Conclusion 



▶ G. Wilson et al., “Best Practices for Scientific Computing”, PLOS Biology, 12:e1001745, 
2014 
https://doi.org/10.1371/journal.pbio.1001745  

▶ https://embassy.science/wiki/Theme:6b584d4e-2c9d-4e27-b370-5fbdb983ab46 

▶ https://en.wikipedia.org/wiki/Data_dredging 

▶ https://embassy.science/wiki/Theme:26631aa0-18f0-4635-b71b-80a6f4e58d33 

▶ https://en.wikipedia.org/wiki/HARKing 

▶ https://en.wikipedia.org/wiki/Scrum_%28software_development%29 

▶ https://en.wikipedia.org/wiki/Agile_software_development  

▶ https://en.wikipedia.org/wiki/Version_control  

▶ https://en.wikipedia.org/wiki/Open_science  

▶ https://uclouvain.be/fr/universite-numerique/rdm  

 

 

 

 

 

References 

https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Open_science
https://en.wikipedia.org/wiki/Open_science
https://uclouvain.be/fr/universite-numerique/rdm
https://uclouvain.be/fr/universite-numerique/rdm
https://uclouvain.be/fr/universite-numerique/rdm
https://uclouvain.be/fr/universite-numerique/rdm


“Code is like humor.  

When you have to explain it, it’s bad.”  
– Cory House 

 

“The first 90% of the code accounts for the first 90% of the 
development time. The remaining 10% of the code accounts for 

the other 90% of the development time.”  
- Tom Cargill 

 

Finally 



Thank you for your attention! 




