

Data representation & storage

GIGA Doctorate School

Mohamed Ali Bahri, Ir Ph.D.

Program

- Bits & bytes
- Data format
- Signal discretization
- File format & compression
- Storage & Safety

Program

- Bits & bytes
- Data format
- Signal discretization
- File format & compression
- Storage & Safety

Bits & bytes

- Bit (for "binary digit") =
 - a basic unit of information used in computing and digital communications.
 - can have only one of two values → physically represented with a twostate device.
 - most commonly represented as either a 0 or 1
- Byte =
 - a unit of digital information
 - most commonly consists of eight bits,
 - representing a binary number

Bytes

Originally,

- number of bits used to encode a single character of text in a computer
- hardware dependent
- convenient as power of $2 \rightarrow$ values from 0 to 255

Now

- *de facto* standard for smallest amount of "memory unit"
- ▶ 32- or 64-bit 'words', built of four or eight bytes
- aka. "octet", symbol 'o',

Expressed in binary vs. decimal base

Name	Binary	Decimal	Discrepancy
Kilo-byte (kB)	2^10 = 1.024 o	1.000	2,4%
Mega-byte (MB)	2^20 = 1.048.576 o	1.000.000	4,8%
Giga-byte (GB)	2^30 = 1.073.741.824 o	1.000.000.000	7,4%
Tera-byte (TB)	2^40 = 1.099.511.627.776 o	1.000.000.000.000	9,9%
Peta-byte (PB)	2^50 = 1.125.899.906.842.674 o	1.000.000.000.000.000	12,6%

Note: 3 orders of magnitude between peta/tera/giga/mega/kilo!

Transfer speed	USB type	Speed
	USB 1.1	1.5 Mo/s
Typical bandwidth	USB 2	60 Mo/s
RAM, ~10Gb per second 1Gb of data in ~ 0.1 second	USB 3.2 G1	640 Mo/s
\rightarrow 100 of data in ~ 0,1 second	USB 3.2 G2	1,25 Go/s
• Hard drive ~ 0.5 Gb per second	USB 4	5 Go/s

- ► Hard drive, ~0,5Gb per second → 10Gb of data in ~ 20 second
- Network, ~100Mbps = ~ 0,1GB per second → 1Tb of data in ~ 10.000 seconds = ~2.8 hours !!!

Data transfer can be a bottle neck!

Note: here Gb = "giga bits"

Program

- Bits & bytes
- Data format
- Signal discretization
- File format & compression
- Storage & Safety

USASCII code chart

Character

- = letter, digit, or punctuation
- with 1 byte, 1 simple character, aka. 'char', from ASCII ("American Standard Code for Information Interchange" from the 1960's)
- 127 characters: 10 digits, 26 letters in lower & upper case, punctuation + formatting codes.
- Limited to English...

_													
٩	5 -			•		° ° ₀	°°,	° , ' o	° ,	¹ 0 ₀	- - 0 -	' ı	1 1 1
	b.4 t	Þ 3 1	Þ ₂	Þ.		0		2	3	4	5	6	7
•	0	0	0	0	0	NUL	DLE	\$P	0	0	P	```	P
	Ò	0	0	Ι	1	SOH	DC1	•	1	Α	0	0	q
	¢	0	Ţ	0	2	STX	DCZ		2	8	Ĥ	Ð	r
	ō	0	1	Ι	3	ETX	DC 3	#	3	C	S	c	s
	ō	1	0	0	4	EOT	DC4	\$	4	D	т	d	t
	0	Ī	0	4	5	ENQ	NAK	*	5	E	U	ŧ	U
	0		1	0	6	ACK	SYN	8	6	F	V	1	v
	0	T	1		7_	8EL	ETÐ	· · ·	7	G	¥	g	w
	Γ	0	0	0	8	85	CAN	(8	н	×	h	×
	T	0	0	I	9	нŢ	EM)	9]	Y	i	У
	T	0	T	0	10	LF	\$U8	*	:	J	Z	j	2
	1	0	1	1		VT	ESC	+	1	ĸ	C	k	{
	Ŧ	1	0	0	12	FF	FS		<	L	N	1	
	T	T	0	1	[]]3	CR	GS	-	E	м	3	m	}
	,	T	T	0	14	50	RS		>	N	~	n	\sim
	1		Î Î	i	15	\$1	US	1	?	0	<u> </u>	0	DEL

Character

- = letter, digit, or punctuation
- UTF-8 from Unicode (or Universal Coded Character Set) Transformation
 Format 8-bit
- UTF-8 extended up to 4 bytes,
 - \rightarrow more possibilities but more complicated
 - → extension to more (non-)characters (math symbols, arrows,...) and alphabets (Greek, Chinese,...)
 - \rightarrow most common for WWW and emails encoding

Integer, signed or unsigned numbers

- with 1 byte,
 - 'int8', values \in [-128 127]
 - 'unit8', values \in [0 255]
- with 2 bytes,
 - 'int16' or 'short', values \in [-32,768 32,767] i.e. [-(2^{15}) 2^{15} 1]
 - 'uint16', values \in [0 65,535] i.e. [0 2^{16} 1]
- with 4 bytes,
 - 'int32' or 'long', values $\in [-(2^{31}) 2^{31} 1]$
 - 'uint32', values \in [0 4,294,967,295 i.e. [0 2^{32} 1]
- with 8 bytes,

- ...

Typically use for pixel intensity coding!

Floating-point ==> $Sign.2^{E}$. F

- Single-precision = 32 bits = 4 bytes
- wide dynamic range of values with "floating radix point":

- sign bit : 1 bit
- exponent width: 8 bits
- significand precision: 24 bits (23 explicitly stored)

 $(-1)^{b_{31}} imes 2^{(b_{30}b_{29}\ldots b_{23})_2 - 127} imes (1.b_{22}b_{21}\ldots b_0)_2,$

Half-/double-precision with 16/64 bits = 2/8 bytes

Floating-point \Rightarrow Sign.2^E. F

- Single-precision = 32 bits = 4 bytes
- wide dynamic range of values with "floating radix point":
 - sign bit : 1 bit
 - exponent width: 8 bits
 - significand precision: 24 bits (23 explicitly stored)

 $ightarrow (-1)^{b_{31}} imes 2^{(b_{30}b_{29}\dots b_{23})_2 - 127} imes (1.b_{22}b_{21}\dots b_0)_2,$

▶ values up to $(2 - 2^{-23}) \times 2^{127} \approx 3.402823 \times 10^{38}$

Floating-point

Half-/double-precision with 16/64 bits = 2/8 bytes

- numbers between 10⁻³⁰⁸ and 10³⁰⁸, with full 15–17 decimal digits precision.
- smaller values up to about 5×10^{-324} (but some compromise needed)

► Still limited (relative) precision, e.g. estimating (v+1) -v can be 0 !

Endianness

- In which order should you interpret the bytes and bits?
- Differences
 - in software & hardware
 - in types of data (integer, float,...)
- Source of problems!

Program

- Bits & bytes
- Data format
- Signal discretization
- File format & compression
- Storage & Safety

Signal discretization

Some continuous values =

- 1. measured by some instrument, (image reconstruction), and
- 2. stored numerically
- \rightarrow discretized value with **finite resolution**!

Numerical data/image

Function I associates a value v at discrete coordinates

(x, y, z, t, s) in a finite hyper-rectangle with regular sampling : $I: X \times Y \times Z \times T \times S \mapsto V: (x, y, z, t, s) \mapsto v$

- ► $x \in \{0, \dots, W 1\}$: horizontal coordinates (W = width)
- ▶ $y \in \{0, \dots, H-1\}$: vertical coordinates (H = height)
- ▶ $z \in \{0, \dots, T-1\}$: slice index (T = thickness).
- ▶ $t \in \{0, \dots, L-1\}$: time in sequence/series (L = length).
- ▶ $s \in \{0, \dots, S-1\}$: canal (S = number of samples).

Examples

$I: X \times Y \times Z \times T \times S \mapsto V: (x, y, z, t, s) \mapsto v$

- ▶ 2D image (pixels) : $I(x, y) \implies RX$, photography, microscopy.
- ► 3D image (voxels) : $I(x, y, z) \implies CT$, MRI, PET.
- ▶ 2D+t series : $I(x, y, t) \Rightarrow$ Ultra-sound, videos (frames).
- ▶ 3D+t image series : $I(x, y, z, t) \Rightarrow$ functional MRI (frames).
- Temporal signal : $I(x, t, s) \implies EEG, ECG$.
- Multi-channel 2D image : $I(x, y, s) \Rightarrow$ microscopy.

Signal discretization

Some continuous values =

- 1. measured by some instrument, (image reconstruction), and
- 2. stored numerically
- \rightarrow discretized value with **finite resolution**!
- Two faces of "resolution" \rightarrow Different file weight!
- time/space \rightarrow sampling rate
- amplitude \rightarrow encoding precision

Encoding precision

How is the value represented on disk?

- Integer vs. float?
- Number of bytes?
- \rightarrow Different resolution

Colour depth

- ▶ Grey levels, e.g. 1 byte/pixel or "8bpp"
- Colour \rightarrow 3 channels e.g. 3 bytes/pixel or "24bpp"

4 valeurs de quantification (2 bits)

256 valeurs de guantification (8 bits)

échelle continue

Sampling rate

How sparse/coarse are data sampled?

- \rightarrow sampling rate
- \rightarrow Nyquist theorem:
- "Sampling Rate > 2 x highest frequency of signal"

Example for 3D image

Consider a 3D image with 256 x 256 x 128 = 2^{23} voxels

- ▶ 1 int16 per voxel → 16 Mb
- ▶ 1 float32 per voxel \rightarrow 32 Mb

Coloured image

 \rightarrow 3 RGB values par voxel, e.g. 3 int8 per voxel \rightarrow 24 Mb

Resample at half the resolution, i.e. 128 x 128 x 64 voxels \rightarrow divide sizes by 8

Program

- Bits & bytes
- Data format
- Signal discretization
- File format & compression
- Storage & Safety

File format

Open vs. closed file format:

- fully described vs. proprietary
- openly readable vs. requiring specific software
- community supported vs. software/company dependent

- \rightarrow Stick to open format whenever possible
- \rightarrow More flexibility to use with homemade software

The case of MS Word & Excel

Both are proprietary and cost €€€ + files are "binarized"

Word & .doc files, replace by

 \rightarrow 'MarkDown' (.md) files

→ open editor/reader, e.g. Typora (<u>https://typora.io/</u>, not free any more though)

Excel & .xls files , replace by

 \rightarrow 'comma-separated value' or 'tab-separated value' (.csv/.tsv) files

 \rightarrow open editor/reader, e.g. CSVed (<u>https://csved.sjfrancke.nl/</u>)

Whenever possible and appropriate

T DataComments.md - Typora - 🗆 X	T DataComments.md - Typora —
<u>F</u> ile <u>E</u> dit <u>P</u> aragraph F <u>o</u> rmat <u>V</u> iew <u>T</u> hemes <u>H</u> elp	<u>F</u> ile <u>E</u> dit <u>P</u> aragraph F <u>o</u> rmat <u>V</u> iew <u>T</u> hemes <u>H</u> elp
Some comments about the data.	## Some comments about the data.
Overall ~79Gb: (~58k files & 208 folders)	Overall ~79Gb: (~58k files & 208 folders)
MSHS, 37Gb, 37 subjects	- MSHS, 37Gb, 37 subjects
• MSPA, 40Gb, 40 subjects	- MSPA, 40Gb, 40 subjects
MSP FLAIR/mask, 2.5Gb, 40 subjects	- MSP FLAIR/mask, 2.5Gb, 40 subjects
MSPA: possibly to exclude. s08825. Rather visible movement artefacts. Poor positioning in scanner -> cerebellum out of FOV? s00349. Some movement artefact + hyper-instensities (artefact) in orbito-frontal area for MT. s00356. hyper-instensities (artefact) in orbito-frontal area for MT + small meningiome between the frontal hemispheres.	<pre>#### MSPA: possibly to exclude. **s08825**. Rather visible movement artefacts. Poor positioning in scanner -> cerebellum out of FOV? **s00349**. Some movement artefact + hyper-instensities (artefact) in orbito-frontal area for MT.</pre>
	s00356. hyper-instensities (artefact) in orbito-frontal area for MT + small meningiome between the frontal hemispheres.

Excel in Genetics

"Gene name errors are widespread in the scientific literature"

Abstract:

The spreadsheet software Microsoft Excel, when used with default settings, is known to **convert gene names to dates and floating-point numbers**. A programmatic scan of leading genomics journals reveals that **approximately one-fifth of papers with supplementary Excel gene lists contain erroneous gene name conversions**.

Ziemann et al., Genome Biology 201617:177

Structured data

Data as

- key/value pairs
- hierarchical structure
- → use 'JavaScript Object Notation', i.e. .json, files

Example, task-Nback_bold.json

```
{
    "RepetitionTime": 3.0,
    "EchoTime": 0.0003,
    "FlipAngle": 78,
    "SliceTiming": [0.0, 0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8],
    "MultibandAccellerationFactor": 4,
    "ParallelReductionFactorInPlane": 2
```

Other option: YAML

```
--- # The Smiths
- {name: John Smith, age: 33}
- name: Mary Smith
    age: 27
- [name, age]: [Rae Smith, 4] # sequences as keys are supported
--- # People, by gender
men: [John Smith, Bill Jones]
women:
    - Mary Smith
    - Susan Williams
```


Data compression

Lossless:

- ▶ no data/signal lost → replace "patterns" with fewer bytes (RLE).
- 2-4x compression rate, depending on data
- e.g. ZIP, PNG, JPEG2000

Lossy:

- Removes some signal \rightarrow irreversible loss!
- ► quality factor from 0 to 100 → >10x compression rate
- e.g. JPEG

Data compression

Very useful for quick (pre-)visualisation!

Program

- Bits & bytes
- Data format
- Signal discretization
- File format & compression
- Storage & Safety

Hard-disk drive

HDD = electromechanical data storage device:

- magnetic storage to read/write data
- on one (or more rigid) rapidly rotating disks
- cheap and storage density increases (Moore's law)
- ▶ latency = ~a few ms,
- ▶ transfer rate up to ~1 Gb/s
- risk of failure increases with time but...

Solid-state drive

SSD = integrated circuit data storage device:

- non-volatile NAND flash memory to read/write data
- no mechanical or moving part
- latency < ms,</p>
- transfer rate up to a few Gb/s
- compared to HDD
 - more expensive and more reliable
 - less power consumption

ULiège mass-storage

- Personal space \rightarrow your own stuff
- ▶ Platform space \rightarrow raw data access
- Team space \rightarrow shared data & results

Keep in mind access time

 \rightarrow no direct processing of data!

Backup vs. Archive

Backup

- copy of current data/system
- includes files which are currently being accessed/changed
- → Restoring data/system to a previous point in time, if they are lost or become corrupted

Archive

- store data/information to be kept for a long period of time
- includes files which should not be modified, accidentaly or purposely
- \rightarrow Restoring the 'original' data/information, e.g. to re-analyse them

Local vs. Remote storage

Local, e.g. USB drive

- Cheap and easy
- Can be lost or corrupted with the rest of the computer
- \rightarrow Better than nothing but not so safe!
- Remote, e.g. institutional mass-storage
- More expensive (for the institution/users) and more constraining (network access)
- Little risk of losing anything (tapes, redundant disks, multi-sites,...)
- \rightarrow Safest option, if available

For code, use versioning \rightarrow more on Monday October 10!

References

- https://en.wikipedia.org/wiki/Bit
- https://en.wikipedia.org/wiki/Byte
- https://en.wikipedia.org/wiki/Character (computing)
- https://en.wikipedia.org/wiki/ASCII
- https://en.wikipedia.org/wiki/UTF-8
- https://en.wikipedia.org/wiki/Integer_(computer_science)
- https://en.wikipedia.org/wiki/Single-precision_floating-point_format
- https://en.wikipedia.org/wiki/Endianness
- https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

References

- https://en.wikipedia.org/wiki/Markdown
- https://typora.io/
- https://en.wikipedia.org/wiki/Comma-separated_values
- https://en.wikipedia.org/wiki/Tab-separated_values
- https://csved.sjfrancke.nl/
- https://en.wikipedia.org/wiki/JSON
- https://en.wikipedia.org/wiki/YAML
- https://doi.org/10.1186/s13059-016-1044-7
- https://en.wikipedia.org/wiki/Run-length_encoding
- https://en.wikipedia.org/wiki/JPEG
- https://en.wikipedia.org/wiki/Hard_disk_drive
- https://en.wikipedia.org/wiki/Solid-state_drive

Thank you for your attention!

