
Data representation & storage

GIGA Doctorate School

Mohamed Ali Bahri, Ir Ph.D.

▶ Bits & bytes

▶ Data format

▶ Signal discretization

▶ File format & compression

▶ Storage & Safety

Program

▶ Bits & bytes

▶ Data format

▶ Signal discretization

▶ File format & compression

▶ Storage & Safety

Program

▶ Bit (for “binary digit”) =
- a basic unit of information used in computing and digital

communications.
- can have only one of two values  physically represented with a two-

state device.
- most commonly represented as either a 0 or 1

▶ Byte =
- a unit of digital information
- most commonly consists of eight bits,
- representing a binary number

Bits & bytes

Originally,
▶ number of bits used to encode a single character of text in a computer

▶ hardware dependent

▶ convenient as power of 2  values from 0 to 255

Now
▶ de facto standard for smallest amount of “memory unit”

▶ 32- or 64-bit ‘words’, built of four or eight bytes

▶ aka. “octet”, symbol ‘o’,

Bytes

Expressed in binary vs. decimal base

Note: 3 orders of magnitude between peta/tera/giga/mega/kilo!

Memory size

Name Binary Decimal Discrepancy

Kilo-byte (kB) 2^10 = 1.024 o 1.000 2,4%

Mega-byte (MB) 2^20 = 1.048.576 o 1.000.000 4,8%

Giga-byte (GB) 2^30 = 1.073.741.824 o 1.000.000.000 7,4%

Tera-byte (TB) 2^40 =
1.099.511.627.776 o

1.000.000.000.000 9,9%

Peta-byte (PB) 2^50 =
1.125.899.906.842.674 o

1.000.000.000.000.000 12,6%

Typical bandwidth
▶ RAM, ~10Gb per second

 1Gb of data in ~0,1 second

▶ Hard drive, ~0,5Gb per second
 10Gb of data in ~20 second

▶ Network, ~100Mbps = ~0,1GB per second
 1Tb of data in ~10.000 seconds = ~2.8 hours !!!

Data transfer can be a bottle neck!

Transfer speed

Note: here Gb = “giga bits”

USB type Speed

USB 1.1 1.5 Mo/s

USB 2 60 Mo/s

USB 3.2 G1 640 Mo/s

USB 3.2 G2 1,25 Go/s

USB 4 5 Go/s

▶ Bits & bytes

▶ Data format

▶ Signal discretization

▶ File format & compression

▶ Storage & Safety

Program

= letter, digit, or punctuation

▶ with 1 byte, 1 simple character,
aka. ‘char’, from ASCII (“American

Standard Code for Information
Interchange” from the 1960’s)

▶ 127 characters: 10 digits, 26 letters in
lower & upper case, punctuation +
formatting codes.

▶ Limited to English…

Character

= letter, digit, or punctuation

▶ UTF-8 from Unicode (or Universal Coded Character Set) Transformation
Format – 8-bit

▶ UTF-8 extended up to 4 bytes,

 more possibilities but more complicated

 extension to more (non-)characters (math symbols, arrows,…) and
alphabets (Greek, Chinese,…)

 most common for WWW and emails encoding

Character

https://en.wikipedia.org/wiki/UTF-8

▶ with 1 byte,
- ‘int8’, values  [-128 127]
- ‘unit8’, values  [0 255]

▶ with 2 bytes,
- ‘int16’ or ‘short’, values  [−32,768 32,767] i.e. [−(215) 215 − 1]
- ‘uint16’, values  [0 65,535] i.e. [0 216 − 1]

▶ with 4 bytes,
- ‘int32’ or ‘long’, values  [−(231) 231 − 1]
- ‘uint32’, values  [0 4,294,967,295 i.e. [0 232 − 1]

▶ with 8 bytes,
- …

Typically use for pixel intensity coding!

Integer, signed or unsigned numbers

▶ Single-precision = 32 bits = 4 bytes

▶ wide dynamic range of values with “floating radix point”:

- sign bit : 1 bit
- exponent width: 8 bits
- significand precision: 24 bits (23 explicitly stored)

▶ Half-/double-precision with 16/64 bits = 2/8 bytes

Floating-point ==> 𝑆𝑖𝑔𝑛.2𝐸 . 𝐹

▶ Single-precision = 32 bits = 4 bytes

▶ wide dynamic range of values with “floating radix point”:
- sign bit : 1 bit
- exponent width: 8 bits
- significand precision: 24 bits (23 explicitly stored)



▶ values up to (2 − 2−23) × 2127 ≈ 3.402823 × 1038

Floating-point  𝑆𝑖𝑔𝑛.2𝐸 . 𝐹

▶ Half-/double-precision with 16/64 bits = 2/8 bytes

▶ Double-precision,

- numbers between 10−308 and 10308, with full 15–17 decimal digits
precision.

- smaller values up to about 5 × 10−324 (but some compromise needed)

▶ Still limited (relative) precision, e.g. estimating(v+1)-v can be 0 !

Floating-point

▶ In which order should you interpret the bytes and bits?

▶ Differences

- in software & hardware

- in types of data (integer,
float,…)

▶ Source of problems!

Endianness

https://en.wikipedia.org/wiki/Endianness

▶ Bits & bytes

▶ Data format

▶ Signal discretization

▶ File format & compression

▶ Storage & Safety

Program

Some continuous values =

1. measured by some instrument, (image reconstruction), and

2. stored numerically

discretized value with finite resolution!

Signal discretization

Function 𝐼 associates a value 𝑣 at discrete coordinates

(𝑥, 𝑦, 𝑧, 𝑡, 𝑠) in a finite hyper-rectangle with regular sampling :
𝐼: 𝑋 × 𝑌 × 𝑍 × 𝑇 × 𝑆 ↦ 𝑉: (𝑥, 𝑦, 𝑧, 𝑡, 𝑠) ↦ 𝑣

▶ 𝑥 ∈ 0, ⋯ , 𝑊 − 1 : horizontal coordinates (𝑊 = width)

▶ 𝑦 ∈ 0, ⋯ , 𝐻 − 1 : vertical coordinates (𝐻 = height)

▶ 𝑧 ∈ 0, ⋯ , 𝑇 − 1 : slice index (𝑇 = thickness).

▶ 𝑡 ∈ 0, ⋯ , 𝐿 − 1 : time in sequence/series (𝐿 = length).

▶ 𝑠 ∈ 0, ⋯ , 𝑆 − 1 : canal (𝑆 = number of samples).

Numerical data/image

𝐼: 𝑋 × 𝑌 × 𝑍 × 𝑇 × 𝑆 ↦ 𝑉: 𝑥, 𝑦, 𝑧, 𝑡, 𝑠 ↦ 𝑣

▶ 2D image (pixels) : I 𝑥, 𝑦 ⟹ RX, photography, microscopy.

▶ 3D image (voxels) : I 𝑥, 𝑦, 𝑧 ⟹ CT, MRI, PET.

▶ 2D+t series : I 𝑥, 𝑦, 𝑡 ⟹ Ultra-sound, videos (frames).

▶ 3D+t image series : I 𝑥, 𝑦, 𝑧, 𝑡 ⟹ functional MRI (frames).

▶ Temporal signal : I 𝑥, 𝑡, 𝑠 ⟹ EEG, ECG.

▶ Multi-channel 2D image : I 𝑥, 𝑦, 𝑠 ⟹ microscopy.

Examples

Some continuous values =

1. measured by some instrument, (image reconstruction), and

2. stored numerically

discretized value with finite resolution!

Two faces of “resolution” Different file weight!
▶ time/space  sampling rate

▶ amplitude  encoding precision

Signal discretization

How is the value represented
on disk?
▶ Integer vs. float?

▶ Number of bytes?

Different resolution

Encoding precision

▶ Grey levels,
e.g. 1 byte/pixel or “8bpp”

▶ Colour → 3 channels
e.g. 3 bytes/pixel or “24bpp”

Colour depth

Sampling rate

How sparse/coarse are data sampled?

sampling rate

 Nyquist theorem:

“Sampling Rate
 > 2 x highest frequency of signal”

Consider a 3D image with 256 x 256 x 128 = 223 voxels
▶ 1 int16 per voxel  16 Mb

▶ 1 float32 per voxel  32 Mb

Coloured image

3 RGB values par voxel, e.g. 3 int8 per voxel  24 Mb

Resample at half the resolution, i.e. 128 x 128 x 64 voxels
divide sizes by 8

Example for 3D image

▶ Bits & bytes

▶ Data format

▶ Signal discretization

▶ File format & compression

▶ Storage & Safety

Program

Open vs. closed file format:

▶ fully described vs. proprietary

▶ openly readable vs. requiring specific software

▶ community supported vs. software/company dependent

Stick to open format whenever possible

More flexibility to use with homemade software

File format

Both are proprietary and cost €€€ + files are “binarized”

▶ Word & .doc files, replace by
‘MarkDown’ (.md) files

open editor/reader, e.g. Typora (https://typora.io/, not free any more though)

▶ Excel & .xls files , replace by
‘comma-separated value’ or ‘tab-separated value’ (.csv/.tsv) files

open editor/reader, e.g. CSVed (https://csved.sjfrancke.nl/)

Whenever possible and appropriate

The case of MS Word & Excel

https://typora.io/
https://typora.io/
https://csved.sjfrancke.nl/

“Gene name errors are widespread in the scientific literature”

Abstract:

The spreadsheet software Microsoft Excel, when used with default settings, is
known to convert gene names to dates and floating-point numbers. A
programmatic scan of leading genomics journals reveals that approximately
one-fifth of papers with supplementary Excel gene lists contain erroneous
gene name conversions.

Ziemann et al., Genome Biology 201617:177

Excel in Genetics

Data as
▶ key/value pairs

▶ hierarchical structure

 use ‘JavaScript Object Notation’,
i.e. .json, files

Other option: YAML

Structured data Example, task-Nback_bold.json

Lossless:
▶ no data/signal lost replace “patterns”

with fewer bytes (RLE).
▶ 2-4x compression rate, depending on data
▶ e.g. ZIP, PNG, JPEG2000

Lossy:
▶ Removes some signal irreversible loss!
▶ quality factor from 0 to 100 >10x

compression rate
▶ e.g. JPEG

Data compression

Decreasing quality factor

Data compression

Very useful for quick (pre-)visualisation!

▶ Bits & bytes

▶ Data format

▶ Signal discretization

▶ File format & compression

▶ Storage & Safety

Program

Hard-disk drive

HDD = electromechanical data storage device:
▶ magnetic storage to read/write data

▶ on one (or more rigid) rapidly rotating disks

▶ cheap and storage density increases (Moore’s law)

▶ latency = ~a few ms,

▶ transfer rate up to ~1 Gb/s

▶ risk of failure increases with time but…

SSD = integrated circuit data storage device:
▶ non-volatile NAND flash memory to read/write data

▶ no mechanical or moving part

▶ latency < ms,

▶ transfer rate up to a few Gb/s

▶ compared to HDD
- more expensive and more reliable

- less power consumption

Solid-state drive

▶ Personal space your own stuff

▶ Platform space  raw data access

▶ Team space  shared data & results

Keep in mind access time

no direct processing of data!

ULiège mass-storage

Backup vs. Archive

Backup
▶ copy of current data/system
▶ includes files which are currently being accessed/changed

Restoring data/system to a previous point in time, if they are lost or
become corrupted

Archive
▶ store data/information to be kept for a long period of time
▶ includes files which should not be modified, accidentaly or purposely

 Restoring the ‘original’ data/information, e.g. to re-analyse them

Local vs. Remote storage

Local, e.g. USB drive
▶ Cheap and easy
▶ Can be lost or corrupted with the rest of the computer

Better than nothing but not so safe!

Remote, e.g. institutional mass-storage
▶ More expensive (for the institution/users) and more constraining (network access)

▶ Little risk of losing anything (tapes, redundant disks, multi-sites,…)

Safest option, if available

For code, use versioning more on Monday October 10!

▶ https://en.wikipedia.org/wiki/Bit

▶ https://en.wikipedia.org/wiki/Byte

▶ https://en.wikipedia.org/wiki/Character_(computing)

▶ https://en.wikipedia.org/wiki/ASCII

▶ https://en.wikipedia.org/wiki/UTF-8

▶ https://en.wikipedia.org/wiki/Integer_(computer_science)

▶ https://en.wikipedia.org/wiki/Single-precision_floating-point_format

▶ https://en.wikipedia.org/wiki/Endianness

▶ https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

References

https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Character_(computing)
https://en.wikipedia.org/wiki/Character_(computing)
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Integer_(computer_science)
https://en.wikipedia.org/wiki/Integer_(computer_science)
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

▶ https://en.wikipedia.org/wiki/Markdown

▶ https://typora.io/

▶ https://en.wikipedia.org/wiki/Comma-separated_values

▶ https://en.wikipedia.org/wiki/Tab-separated_values

▶ https://csved.sjfrancke.nl/

▶ https://en.wikipedia.org/wiki/JSON

▶ https://en.wikipedia.org/wiki/YAML

▶ https://doi.org/10.1186/s13059-016-1044-7

▶ https://en.wikipedia.org/wiki/Run-length_encoding

▶ https://en.wikipedia.org/wiki/JPEG

▶ https://en.wikipedia.org/wiki/Hard_disk_drive

▶ https://en.wikipedia.org/wiki/Solid-state_drive

References

https://typora.io/
https://typora.io/
https://typora.io/
https://typora.io/
https://en.wikipedia.org/wiki/Tab-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values
https://csved.sjfrancke.nl/
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML
https://doi.org/10.1186/s13059-016-1044-7
https://doi.org/10.1186/s13059-016-1044-7
https://doi.org/10.1186/s13059-016-1044-7
https://doi.org/10.1186/s13059-016-1044-7
https://doi.org/10.1186/s13059-016-1044-7
https://doi.org/10.1186/s13059-016-1044-7
https://doi.org/10.1186/s13059-016-1044-7
https://doi.org/10.1186/s13059-016-1044-7
https://doi.org/10.1186/s13059-016-1044-7
https://doi.org/10.1186/s13059-016-1044-7
https://en.wikipedia.org/wiki/Run-length_encoding
https://en.wikipedia.org/wiki/Run-length_encoding
https://en.wikipedia.org/wiki/Run-length_encoding
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Solid-state_drive

Thank you for your attention!

