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Rat: Factor ~ 600

Mouse: Factor ~ 2400
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Decreased metabolism in PCC = # LIEGE
demonstrated by FDG_PET 4» universite

FDG-PET
Hypometabolism in
Posterior Cingulate Cortex

Minoshima et al, 1994
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Another PET discovery: g Ll.EG. E
The Default Mode Network - université
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Rest - Attention

CBF

FAg.5. Reglons of the brain requiarly observed to dacrease their activity during attention-demanding cognitive tasks shown In sagittal projection {Upper) as
compared with the blood flow of the brain while the subject rests quietly but Is awake with eyes dosed (Lower). The data In the top row are the same as those
shown in FiQ. 1, except In the sagittal projection, to emphasize the changes along the midline of the hemispheres. The data In the bottom row represent the
blood flow of the brain and are the same data shown In horizontal projection In the top row of Fig. 2. The numbers below the Images refer to the millimeters
to the right (positive) or left (negative) of the midline.

Raichle, 2001



d CBF, CMRO2, CMRGlu in AD QL ECE

(1) There is no ischemia
in AD

(2) CMRO2 versus CMRGIu

Fukuyama, 1994



Oxygen to Glucose Metabolic Index Lll_nllvEerGS|tEe
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Oxygen to Glucose Metabolic Index :»’ uLnll\/Eeer,ltEe

Early studies reported that the whole-brain average oxygen-to-glucose index was around 5.5.

If glucose is entirely consumed via oxidative pathways, the index should be 6, as 6 moles of
oxygen are required to oxidize 1 mole of glucose. An index of 5.5 indicates that nearly 10%
of the brain’s glucose consumption at rest does not undergo oxidative phosphorylation.

The lowest rates aerobic glycolysis were found in the cerebellum and medial temporal lobe,
whereas the highest were found in the prefrontal and parietal cortices

The expression of genes related to synaptic plasticity and development is enriched in brain
regions with high levels of aerobic glycolysis. This suggests that a portion of the brain’s
non-oxidative glucose metabolism in spent on synaptic plasticity and other biosynthetic

processes
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Oxygen to Glucose Metabolic Index & université
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Some researches strongly suggest that physiological synaptic activity associated with
aerobic glycolysis regulates interstitial fluid AP levels and AP plaque formation.

The highest rates of aerobic glycolysis were found in the prefrontal and parietal cortices
(Default Mode Network / DMN)

Data suggest that high rates of aerobic glycolysis may put a brain region at risk for
developing amyloid plaques later in life
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Figure 7.

szs showing lateral and medial cortical surfaces of the human brain on which are depicted
the mean distribution of AG in units of the GI in 33 neurologically normal young adults

and 11C-PIB binding potentials in 11 individuals with DAT. Reproduced with permission
from Vlassenko et al. [20].

Aerobic Glycolytic
Index
in young controls

Amyloid-PET
in AD

Vlassenko &
Raichle, 2015
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Some researches strongly suggest that physiological synaptic activity associated with aerobic glycolysis
requlates interstitial fluid AP levels and A plaque formation.

The highest rates of aerobic glycolysis were found in the prefrontal and parietal cortices
(Default Mode Network / DMIN)

Data suggest that high rates of aerobic glycolysis may put a brain region at risk for developing amyloid
plaques later in life

CMRglc has been shown to decrease to a greater extent than CMRO?2 in individuals with AD.
This indicates that aerobic glycolysis decreases in AD (at least in early stages)



3 Atrophy and molecular imaging & tl,l_nllvEeer.ltEe

Regional glucose metabolic abnormalities
are not the result of atrophy
in Alzheimer's disease
Ibanez et al, 1998

Correction of metabolic values for atrophy
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A biological model of AD: amyloid & tau
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A biological model of AD: amyloid & A
glucose metabolism * LIEGE
Cyctotron in transgenic (McGill R Thy1 APP) rat e Pl
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Preclinical stages of AD (Sperling, 2011) * LIEGE
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Stage 1

Asymptomatic amyloidosis

-High PET amyloid tracer retention
-Low CSF AB, 45

Stage 2

Amyloidosis + Neurodegeneration

-Neuronal dysfunction on FDG-PET/fMRI

-High CSF tau/p-tau

-Cortical thinning/Hippocampal atrophy on sMRI

Stage 3
Amyloidosis + Neurodegeneration + Subtle C
-Evidence of subtle change from baseline lev
-Poor performance on more challenging cognitive tests
-Does not yet meet criteria for MCI
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Characteristic metabolic pattern
in subjects at risk for AD:

family history and
e4 homozygotes

E.M. Reiman et al, 1996



j Pittsburg compound-B (PiB)
for amyloid-PET
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PiB is binding to
B-pleated sheets

Klunk et al, 2004
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T ey for amyloid-PET .
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Correlation between
in vivo PiB-PET

and post-mortem 6-CN-PiB

Autopsy tissue MRI scan PIB-PET scan 6-CN-PIB density map

| HEERCE .

20 011123 45 67+
PIB DVR 6-CN-PIB Plaque Load (% area)

Ikonomovic et al, Brain 2008
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8 Post mortem NFT/tau brain lesions in AD Lll_nllvEerGS|tEe

N N R
Neuropathological staging of AD II
NFT-Stages I-1II NFT-Stages III-1IV NFT-Stages V-VI

(Limbic stages)

Neurofibrillary tangles = NFT Braak and Braak 1991
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8 fqu-PET tfracer [18F]THK5351 <<

B-sheet-binding compound;

Higher atfinity for tau fibrils
than for AP fibrils

Amyloid +?

Okamura, 2018



Distribution of tau-PET tracer versus PiB
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researchn cenire

[11C]JPBB3  [11C]PiB




Neuroinflammation in AD f»’ Lll_nll\/Eeer,ltEe

Neuroinflammation in the form of microglial and astrocyte activation has been recognised
to be a component of AD pathological cascade.

Microglia may express a reparative phenotype, acting to clear cellular debris and remodel
synapses or, alternatively, a cidal phenotype releasing cytokines which damage neurons
(M2/M1 paradigm). It remains unresolved which phenotype is preferentially expressed at
different time points along the AD trajectory.

Translocator Protein (TSPO) is expressed on microglia and positron emission tomography
(PET) studies in humans have shown higher signals in prodromal Alzheimer’s disease
which could support an initially protective role of microglia

Inter-subject variability in binding affinity exists due to polymorphism in the TSPO gene



Neuroinflammation before tau in AD <$ uLnllvEercs.;ltEe

High Ap MCI High Ap MCI
Female, 72 y Male, 76 y
MMSE 28 MMSE 25

A biphasic course
(reparative followed by
cidal inflammation) was

suggested in a
longitudinal study

Ismael, 2020
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Reactive astrocytes in (PiB+) MCI

MCI PIB -

MCIPIB +

[11C]-deuterium L
deprenyl
(binding to MAO-B)

Carter, 2012
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[18F]THKS351 binds to tau & MAO-B <P

B-sheet-binding compound;

Higher atfinity for tau fibrils
than for AP fibrils

Amyloid +?

Okamura, 2018
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8 Assessment of the cholinergic system & uLnllvEercs.;ltEe

Decrease of cortical
presynaptic Vesicular
Acetylcholine transporter
(VAChT) studied with
[18F]FEOBV-PET in AD

The hippocampus,
innervated by septal
cholinergic neurons,
would be less affected.

Aghourian, 2017
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Assessment of the cholinergic system

? Dorsolateral pontine

Neocortical and amygdaloid
functional changes of the cholinergic
system (using AchE radiotracer) are
an early and leading event in AD,
rather than the consequence of
neurodegeneration of basal nuclei.

Herholz et al, 2004
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Brain mGIuR5 in AbPP transgenic mice (tg-ArcSwe) -
with amyloid beta pathology studied with in vivo ¥ LIEGE
[11C]ABP688 PET imaging 43 universite

mGluRS levels were found to
decrease with age and tended to
be higher in

tg-ArcSwe compared with wt
mice

Saturation with cold
substance



Glutamatergic pathway in AD & L5

Decrease of hippocampal
Metabotropic Glutamate
ReceptorSmGluR5 (both pre-
and post synaptic)

e Glutamate
@ m NMDA receptor
€ [ Awve
m m AMPA receptor
®
e '. o ®
B ®

mGIuR5
= : ’l ; ﬂl‘ﬂm mGIuR2/3
' : 25| i |
‘ . (___ Homer protein
: “l @ G,

18
[ "FIFPEB BPND
Hippocampus

. Phospholipase C

18

[""FIFPEB BPND
Association Cortex
- o

e
o

0 0 2020
CN (Amyloid -) AD (Amyloid +) CN (Amyloid -) AD (Amyloid +) Mecca,



Cycloiron

Synaplobrevin

SNAP25 Viila Synaptotagmin

CIC3

Synaplophysin

cspP

q SV2

SCAMP

SNAP29

VAMP4

Syntaxin

3 o
Y

VGLUT

GTPase

Radiotracer:
[18F]UCB-H

F. o

F N

Late endosome,

ynaptic vesucle lysosome
precursor

- -7 2
Turnover of rd
plasma membrane

proteins ? a
r

? - =

Neurotransmltter ¢ . B, .

uptake “ Uncoating
N

Translocation * ) Clathrin-
S = coated vesicle

- — i Fission
. " < 27 .. . . I
Active zone . £33 i

Endocytosis

SV2A is involved in synaptic vesicle
trafficking

SV2A is ubiquitous in the brain




<) A SV2A-PET in AD 4 eGE
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Control e - Mild AD

Visual analysis suggest a decrease in SV2A binding in medial

temporal structures Bastin, EJNMMI 2019



q SV2A & tau-PET in AD’ s MTL e

p = 0.02 High correlation

(no causality)

"C-UCB-) SUVR in MTL
U

18F_-MK-6240 SUVR in MTL Vanhaute et al, 2020
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Frontotemporal lobar degeneration (FTLD) Ll

FTLD-3
CHMPZB

| | Type B
. (C9orf72) aFTLD-U ] BIBD
o (TARDP?)
FTDP-17 : : Type D Type U FUS NOS
VCP C90rf72 FUS

Slide courtesy of W. Seeley, UCSF *Mackenzie harmonized scheme, 2011

FTLD-tau FTLD-TDP* FTLD-FUS
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Behav10ral & social disturbances in bvFTD @ université
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Disinhibition

Apathy

Loss of empathy
Stereotyped behavior
Hyperorality

.. and language In the other variants
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FDG-PET in FTD & iversita
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FDG-PET in FTD 4 =5

Variable involvement of frontal cortex
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SV2A-PET in FTD’s MTL & vniversite
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FTD-Tau g

Microtubule
Associated
Protein Tau

Familial FTD due to MAPT mutation

B ———
Nonfluent-variant primary progressive aphasia 3R/4R-
Microtubule

Associated
Protein Tau

Whitwell, 2019 [:¥



R= Tau-PET variability in bvFTD <P * LIEGE

18F flortaucipir SUVR 28F-flortaucipir w-score =] 18 flortaucipir SUVR  *F-flortaucipir w-score

lﬂé’ﬁu"%} 6 4

2

Tsai, 2019
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Conclusion & universits
]

Molecular imaging and biomarkers are key elements
for new concepts of neurodegenerative diseases
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