Neuroscience week 2021

Biomarkers in Alzheimer's Disease and FrontoTemporal Dementia **E. Salmon, MD, PhD**

CYCLOTRON RESEARCH CENTRE IN VIVO IMAGING

Mice with AD pathology

APP-BASED MOUSE MODELS OF AD			APP. PSEN AND TAU TRANSGENIC MICE		
тд2576	APP mutation: Swedish	 Intraneuronal Abeta (1.5 m) Inflammation (2 m) Memory deficits (4 m) Synaptic dysfunction (4 m) Plaques (11 m) 	ЗхТg	 APP mutation: Swedish PSEN1 mutation: M146V Tau mutation: MAPT P301L 	 Plaques (6 m) Tau pathology (12 m) Intraneuronal Abeta (3 m) Synaptic dysfunction (6 m) Memory deficits (4 m) Inflammation (7 m)
APP AND PSEN DO	UBLE TRANSGENIC MICE		D D1 Table	ADD mutotions Overstate	Discuss (21 m)
TASTPM	APP mutation: Swedish PSEN1 mutation: M146V	 Plaques (6 m) Inflammation (6 m) Memory deficits (6 m) 	PLBT Inple	 APP Inutation: Swedish, London PSEN1 mutation: A246E Tau mutation: MAPT P301L, R406W 	 Plaques (21m) Hyperphosphorylated tau (6m) Intraneuronal Abeta (12m) Synaptic dysfunction (12m) Memory deficits (12m) Inflammation (12m)
APPIPOL	 APP mutation: Swedish PSEN1 mutation: deltaE9 	 Plaques (s m) Inflammation (3 m) Synaptic dysfunction (4 m) Memory deficits (12 m) 			
			NON-APP-BASED MODEL		
		 Neuron loss (8 m) 	Tg4-42	Overexpressing Apt-42 (no	 Neuron loss (5 m)
APPPS1-21	 APP mutation: Swedish PSEN1 mutation: L166P 	 Plaques (1.5 m) Phosphorylated tau, no mature tangles Neuron loss (17 m) Inflammation (1.5 m) 		mutation)	 Synaptic dysfunction (2 m) Memory deficits (5 m) Inflammation (2 m) Intraneuronal Abeta (2 m)
APP/PS2	 APP mutation: Swedish PSEN2 mutation: N1411 	 Plaques (6 m) Inflammation (6 m) Synaptic dysfunction (10 m) Memory deficits (8 m) 			
5XFAD	 APP mutation: Swedish, Florida, London PSEN1 mutation: PSEN1, L286V 	 Plaques (1.5 m) Synaptic dysfunction (4 m) Neuron loss (9 m) Inflammation (2 m) Memory deficits (4 m) Intraneuronal Abeta (1.5 m) 			

A Positron Emission Tomography

Cerebral metabolism at rest (FDG-PET)

18F 11C 15O (H₂15O)

SPM: align, normalize, analyse

A Positron Emission Tomography

A Positron Emission Tomography in rat

Decreased metabolism in PCC demonstrated by FDG-PET

FDG-PET Hypometabolism in Posterior Cingulate Cortex

Minoshima et al, 1994

Another PET discovery: The Default Mode Network

Rest - Attention

CBF

Fig. 5. Regions of the brain regularly observed to decrease their activity during attention-demanding cognitive tasks shown in sagittal projection (Upper) as compared with the blood flow of the brain while the subject rests quietly but is awake with eyes closed (Lower). The data in the top row are the same as those shown in Fig. 1, except in the sagittal projection, to emphasize the changes along the midline of the hemispheres. The data in the bottom row represent the blood flow of the brain and are the same data shown in horizontal projection in the top row of Fig. 2. The numbers below the images refer to the millimeters to the right (positive) or left (negative) of the midline.

CBF, CMRO2, CMRGlu in AD

(1) There is no ischemia in AD

(2) CMRO2 versus CMRGlu

Fukuyama, 1994

Oxygen to Glucose Metabolic Index

Early studies reported that the whole-brain average oxygen-to-glucose index was around 5.5.

If glucose is entirely consumed via oxidative pathways, the index should be 6, as 6 moles of oxygen are required to oxidize 1 mole of glucose. An index of 5.5 indicates that nearly 10% of the brain's glucose consumption at rest does not undergo oxidative phosphorylation.

The lowest rates aerobic glycolysis were found in the cerebellum and medial temporal lobe, whereas the highest were found in the prefrontal and parietal cortices

The expression of genes related to synaptic plasticity and development is enriched in brain regions with high levels of aerobic glycolysis. This suggests that a portion of the brain's non-oxidative glucose metabolism in spent on synaptic plasticity and other biosynthetic processes

Some researches strongly suggest that physiological synaptic activity associated with aerobic glycolysis regulates interstitial fluid A β levels and A β plaque formation.

The highest rates of aerobic glycolysis were found in the prefrontal and parietal cortices (Default Mode Network / DMN)

Data suggest that high rates of aerobic glycolysis may put a brain region at risk for developing amyloid plaques later in life

Oxygen to Glucose Metabolic Index

Figure 7.

Maps showing lateral and medial cortical surfaces of the human brain on which are depicted the mean distribution of AG in units of the GI in 33 neurologically normal young adults and ¹¹C-PIB binding potentials in 11 individuals with DAT. Reproduced with permission from Vlassenko et al. [20].

Aerobic Glycolytic Index in young controls

Amyloid-PET in AD

> Vlassenko & Raichle, 2015

Some researches strongly suggest that physiological synaptic activity associated with aerobic glycolysis regulates interstitial fluid Aβ levels and Aβ plaque formation.

The highest rates of aerobic glycolysis were found in the prefrontal and parietal cortices (Default Mode Network / DMN)

Data suggest that high rates of aerobic glycolysis may put a brain region at risk for developing amyloid plaques later in life

CMRglc has been shown to decrease to a greater extent than CMRO2 in individuals with AD. This indicates that aerobic glycolysis decreases in AD (at least in early stages)

Atrophy and molecular imaging

Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer's disease Ibanez et al, 1998

Correction of metabolic values for atrophy

A biological model of AD: amyloid & tau

 Hypothetical model of dynamic
 evolution of
 brain
 biomarkers in AD

A biological model of AD: amyloid & glucose metabolism in transgenic (McGill R Thy1 APP) rat

PET-amyloid

PET-FDG

Preclinical stages of AD (Sperling, 2011)

Stage 1 Asymptomatic amyloidosis -High PET amyloid tracer retention -Low CSF $A\beta_{1-42}$

..

Stage 2

Amyloidosis + Neurodegeneration

-Neuronal dysfunction on FDG-PET/fMRI -High CSF tau/p-tau -Cortical thinning/Hippocampal atrophy on sMRI

Stage 3

Amyloidosis + Neurodegeneration + Subtle Cognitive Decline -Evidence of subtle change from baseline level of cognition -Poor performance on more challenging cognitive tests Does not yet meet criteria for MCI

MCI AD dementia

FDG-PET in asymptomatic participant

Characteristic metabolic pattern in subjects at risk for AD:

family history and e4 homozygotes

E.M. Reiman et al, 1996

Pittsburg compound-B (PiB) for amyloid-PET

PiB is binding to β -pleated sheets

Klunk et al, 2004

Pittsburg compound-B (PiB) for amyloid-PET

Correlation between in vivo PiB-PET and post-mortem 6-CN-PiB

Ikonomovic et al, Brain 2008

Frontal

Undefined : ALZ103 001 0018 rea sum0-11 twc Slice 45 Undefined : ALZ103 001 0018 rea sum0-11 twc Sag. Slic: Undefined : ALZ103 001 0018 rea sum0-11 twc Cor. Slic

Post mortem NFT/tau brain lesions in AD

tau-PET tracer [18F]THK5351

β-sheet-binding compound;Higher affinity for tau fibrils than for Aβ fibrils

Amyloid +?

Okamura, 2018

Neuroinflammation in the form of microglial and astrocyte activation has been recognised to be a component of AD pathological cascade.

Microglia may express a reparative phenotype, acting to clear cellular debris and remodel synapses or, alternatively, a cidal phenotype releasing cytokines which damage neurons (M2/M1 paradigm). It remains unresolved which phenotype is preferentially expressed at different time points along the AD trajectory.

Translocator Protein (TSPO) is expressed on microglia and positron emission tomography (PET) studies in humans have shown higher signals in prodromal Alzheimer's disease which could support an initially protective role of microglia

Inter-subject variability in binding affinity exists due to polymorphism in the TSPO gene

LIÈGE université

A biphasic course (reparative followed by cidal inflammation) was suggested in a longitudinal study Ismael, 2020

Inflammation (clearing amyloid?)

Reactive astrocytes in (PiB+) MCI

[11C]-deuterium L deprenyl (binding to MAO-B)

Carter, 2012

[18F]THK5351 binds to tau & MAO-B

β-sheet-binding compound;Higher affinity for tau fibrils than for Aβ fibrils

Amyloid +?

Decrease of cortical presynaptic Vesicular Acetylcholine transporter (VAChT) studied with [18F]FEOBV-PET in AD

The hippocampus, innervated by septal cholinergic neurons, would be less affected.

Aghourian, 2017

Neocortical and amygdaloid functional changes of the cholinergic system (using AchE radiotracer) are an early and leading event in AD, rather than the consequence of neurodegeneration of basal nuclei.

Herholz et al, 2004

Basal forebrain volume reliably predicts the cortical spread of Alzheimer's degeneration.

Fernandez-Cabello, 2020

Assessment of the serotoninergic system

Assessment of the Serotonin Reuptake Transporter (SERT) with [11C]DASB-PET in depressed & non depressed AD patients

Brain mGluR5 in AbPP transgenic mice (tg-ArcSwe) with amyloid beta pathology studied with in vivo [11C]ABP688 PET imaging

mGluR5 levels were found to decrease with age and tended to be higher in tg-ArcSwe compared with wt mice

Saturation with cold substance

Glutamatergic pathway in AD

Decrease of hippocampal Metabotropic Glutamate Receptor5mGluR5 (both preand post synaptic)

Mecca, 2020

Synaptic vesicles 2A (SV2A) protein

Radiotracer: [18F]UCB-H

SV2A is involved in synaptic vesicle trafficking

SV2A is ubiquitous in the brain

Control Mild AD Visual analysis suggest a decrease in SV2A binding in medial temporal structures Bastin, EJNMMI 201

SV2A & tau-PET in AD' s MTL

High correlation

(no causality)

Vanhaute et al, 2020

FTLD clinicopathologic spectrum

Disinhibition Apathy Loss of empathy Stereotyped behavior Hyperorality

... and language in the other variants

AD

FTD

Variable involvement of frontal cortex

FDG-PET in temporal cortex of FTD

SV2A-PET in FTD's MTL

Tau-PET variability in FTD

R

AV1451 SUNR

FTD-Tau

Familial FTD due to MAPT mutation

Nonfluent-variant primary progressive aphasia

4R-Microtubule Associated Protein Tau

3R/4R-Microtubule Associated Protein Tau

Whitwell, 2019

_••

Tau-PET variability in bvFTD

Tsai, 2019

Molecular imaging and biomarkers are key elements for new concepts of neurodegenerative diseases

