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SPM work flow 
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General Linear Model 
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Model is specified by 

1. Design matrix X 

2. Assumptions about  

N: number of scans 

p: number of regressors 

This is for a 
SINGLE voxel ! 

Design matrix X 

is the same for 
ALL voxels ! 

~N(0, s2I) 



Estimation of the parameters 
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𝑦  = +𝜀 

𝛽 

𝜀~𝑁(0, 𝜎2𝐼) 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 

i.i.d. assumptions: 

OLS estimates: 

𝛽 1 = 3.9831 

𝛽 2−7 = {0.6871, 1.9598, 1.3902, 166.1007, 76.4770, −64.8189} 

𝛽 8 = 131.0040 

𝜀 = 

𝜎 2 = 𝜀 𝑇𝜀 
𝑁−𝑝 𝛽 ~𝑁 𝛽, 𝜎2(𝑋𝑇𝑋)−1  



GLM & Mass univariate approach 
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Convolution model of the BOLD response  
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Convolve stimulus 
function with a canonical 
hemodynamic response 
function (HRF): 

  HRF 

 

t

dtgftgf
0

)()()( 



Low-frequency noise  
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Solution: High pass filtering 

blue =  data 

black =  mean + low-frequency drift 

green =  predicted response, taking into 
account  low-frequency drift 

red =  predicted response, NOT taking 
into  account low-frequency drift 

discrete cosine 

transform (DCT) 

set 



~N(0, s2I) 

3. Serial correlation 
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)(eCov

autocovariance 
function 
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i.i.d: 



Multiple covariance components  
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=  1 + 2 

Q1 Q2 

Estimation of hyperparameters  with ReML (Restricted Maximum 
Likelihood). 

V 

enhanced noise model at voxel i 

error covariance components 
Q and hyperparameters  
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  XY ?)(Cov observed 

Q1 

Q2 

ReML 
estimated 
correlation 

matrix 

Restricted Maximul Likelihood 
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Maximum Likelihood Ordinary least-squares 

ReML (pooled estimate) 

•2 passes (first pass for selection of voxels) 
•more accurate estimate of V 

Assume, at 
voxel j: 
 
  

VC jj s ,

)(SE 


T

T

c

c
t  cXVXVcc
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Estimation in SPM 



Limitations 
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The AR(1)+white noise model may 

not be enough for short TR (<1.5 s) 

 
 

= 𝜆1 +𝜆2 +𝜆3 +𝜆4 +𝜆5 

V 
𝑄1

 𝑄2
 𝑄3

 𝑄4
 𝑄5

 

+ … 

The flexibility of the ReML enables the use of 
any number of components of any shape  
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Hypothesis testing 

To test a hypothesis, we construct “test statistics”. 

• Null Hypothesis H0 

Typically what we want to disprove (no effect). 

→ Alternative Hypothesis HA expresses outcome of interest 

• Test Statistic T 

The test statistic summarises 
evidence about H0. 

Typically, test statistic is small 
in magnitude when the  
hypothesis H0 is true and  
large when false.  

→ We need to know the distribution of T under the 

 null hypothesis. 
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Null Distribution of T 



Hypothesis testing & inference 

• Significance level α: 

   Acceptable false positive rate α. 

                                          threshold uα 

    Threshold uα controls the false positive rate  

 

 

• Conclusion about the hypothesis: 

    We reject the null hypothesis in favour  
of the alternative hypothesis if t > uα 

• p-value: 

   A p-value summarises evidence against H0. 

    This is the chance of observing value more 
extreme than t under the null hypothesis. 
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Null Distribution of T 

t 

p-value   

Null Distribution of T 

 

u 

)|( 0HuTp  

𝑝 𝑇 > 𝑡|𝐻0  



Contrast & effect of interest 

A contrast selects a specific 
effect of interest 

• a contrast 𝑐 is a vector of length 𝑝. 

• 𝑐𝑇𝛽 is a linear combination of 
regression coefficients 𝛽. 

 

𝑐 = [1 0 0 0 … ]𝑇 
 

𝑐𝑇𝛽 = 𝟏 × 𝛽1 + 𝟎 × 𝛽2 + 𝟎 × 𝛽3 + 𝟎 × 𝛽4 + ⋯ 
 

        = 𝜷𝟏 
 

𝑐 = [0 1 − 1 0 … ]𝑇  
 

𝑐𝑇𝛽 = 𝟎 × 𝛽1 + 𝟏 × 𝛽2 + −𝟏 × 𝛽3 + 𝟎 × 𝛽4 + ⋯ 
 

        = 𝜷𝟐 − 𝜷𝟑 

 
18 

[1 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 1 -1 0 0 0 0 0 0 0 0 0 0 0] 

𝑐𝑇𝛽 ~𝑁 𝑐𝑇𝛽, 𝜎2𝑐𝑇(𝑋𝑇𝑋)−1𝑐  



t-Test, one dimensional contrast 
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cT = 1 0 0 0 0 0 0 0 

T =  

contrast of 
estimated 

parameters 

variance 
estimate 

box-car amplitude > 0 ? 
= 

1 = cT> 0 ? 

1 2 3 4 5 ... 

Question: 

Null hypothesis: H0: c
T=0  

Test statistic: 
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t-Test in SPM 
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con_???? image 

̂Tc

ResMS image 
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t-Test, simple example 
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Q: activation during 

listening ? 

cT = [ 1 0 0 0 0 0 0 0] 

Null hypothesis: 01 

Passive word listening vs. rest 

SPMresults: 
Height threshold T = 3.2057  {p<0.001} 

voxel-level 
p  uncorrected T ( Z  

) 
mm mm mm 

 13.94   Inf 0.000 -63 -27  15 
 12.04   Inf 0.000 -48 -33  12 
 11.82   Inf 0.000 -66 -21   6 
 13.72   Inf 0.000  57 -21  12 
 12.29   Inf 0.000  63 -12  -3 
  9.89  7.83 0.000  57 -39   6 
  7.39  6.36 0.000  36 -30 -15 
  6.84  5.99 0.000  51   0  48 
  6.36  5.65 0.000 -63 -54  -3 
  6.19  5.53 0.000 -30 -33 -18 
  5.96  5.36 0.000  36 -27   9 
  5.84  5.27 0.000 -45  42   9 
  5.44  4.97 0.000  48  27  24 
  5.32  4.87 0.000  36 -27  42 

1 

𝑡 =
𝑐𝑇𝛽 

var 𝑐𝑇𝛽 
 



t-Test, summary 

• T-test is a signal-to-noise measure (ratio of 

estimate to standard deviation of estimate). 

• Alternative hypothesis: 
 

 

• T-contrasts are simple combinations of the 
betas 

• T-statistic does not depend on the scaling 
of the regressors or the scaling of the 
contrast. 
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H0: 0Tc vs     HA: 0Tc



t-Test, scaling issue 

• The T-statistic does not depend 
on the scaling of the regressors 

neither of the contrast. 

• Contrast 𝑐𝑇𝛽  does depend on 

scaling. 

• Be careful of the interpretation 

of the contrasts 𝑐𝑇𝛽  themselves 
(e.g., for a second level 
analysis): 
                 sum ≠ average 
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F-test, extra-sum-of-squares principles 

Model comparison: 
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Null Hypothesis H0: True model is X0 (reduced model) 

Full model ?  

X1   X0 

or Reduced model?  

X0 Test statistic: ratio of 

explained variability and 

unexplained variability (error) 

1 = rank(X) – rank(X0) 

2 = N – rank(X) 

RSS 

 2ˆ
full

RSS0
 

 2ˆ
reduced



F-test, multidimensional contrast 

Tests multiple linear hypotheses: 
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0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

cT  = 

H0: 4 = 5 = ... = 9 = 0 

X1  (4-9) X0 

Full model? Reduced model? 

H0: True model is X0 

X0 

test H0 :  c
T = 0 ? 

SPM{F6,322} 



F-contrast in SPM 
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F-test, example 

Movement related effects 

27 Design matrix 
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F-test summary 

• F-tests can be viewed as testing for the additional 
variance explained by a larger model w.r.t. a 
simpler (nested) model → model comparison. 

• F-tests a weighted sum of squares of one or 
several combinations of the coefficients . 

• In practice, noneed to explicitly separate X into  
[X1 X2] thanks to multidimensional contrasts. 

• Hypotheses: 

 

 

• In 1D contrast with an F-test, testing 1 – 2 is the 
same as testing 2 – 1.  
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A bad model 
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True signal (---) and 
observed signal 

Model (green, peak at 

6sec) and TRUE signal 
(blue, peak at 3sec) 

Fitting : 
 b1 = 0.2, mean = .11 

 Test for the green regressor not significant 

Noise  
(still contains some signal)  



 

P( b1 = 0 ) = 0.1  

(t-test b1>0) 
 

P( b1 = 0 ) = 0.2  

(F-test b1≠0) 
 

 
Residual Variance =  0.3 

 

A bad model 
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 

= + 

Y X  

b1= 0.22 

     b2= 0.11  



A better model… 
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True signal + observed 
signal  

Global fit (blue) 
and partial fit (green & red) 
Adjusted and fitted signal 

Noise (a smaller variance)  

Model (green and red) 
and true signal (blue ---) 
Red regressor : temporal 
derivative of the green 
regressor 



A better model 
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 

= + 

Y X   

b1= 0.22 

    b2= 2.15 

        b3= 0.11 

Residual Var =  0.2 

 

P( b1 > 0 ) = 0.07  

(t test b1>0) 
 

P( [b1 b2] = [0 0] ) = 

0.000001   

(F test [b1 b2]≠[0 0]) 
 

 Test of the green regressor almost significant 
 Test F very significant 
 Test of the red regressor very significant 



Summary 
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•  We rather  test flexible models if there is 
little a priori  information, and precise ones 
with a lot a priori information 

•  The residuals should be looked at ...(non 

random structure ?) 

•  In general, use the F-tests to look for 
an overall effect, then look at the betas 
or the adjusted signal to characterise 
the origin of the signal  

•  Interpreting the test on a single 
parameter (one function) can be very 
confusing: cf. the delay or magnitude 
situation 



Correlation between regressors 
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True signal  

Fitting (blue : global fit) 

Noise 

Model (green and red)  



Correlation between regressors 
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 

= + 

Y X  

b1= 0.79 

     b2= 0.85 

           b3 = 0.06  

Residual var. =  0.2 

 

P( b1 = 0 ) = 0.08 

(t test b1>0) 

 

P( b2 = 0 ) = 0.07 

(t test b2>0) 

 

P( [b1 b2] = 0 ) = 0.002  

(F test [b1 b2] ≠ 0 ) 



Decorrelated regressors 
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true signal  

Noise 

Fit 

Model : red regressor 
orthogonalised with respect to 
the green one = remove every 
thing that can correlate with  

the green regressor  



Decorrelated regressors 
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 

= + 

Y X  

b1= 1.47 

     b2= 0.85 

           b3 = 0.06  

Residual var. =  0.2 

 

P( b1 = 0 ) = 0.0003 

(t test b1>0) 

 

P( b2 = 0 ) = 0.07  

(t test b2>0) 

 

P( [b1 b2] = 0 ) = 0.002  

(F test [b1 b2] ≠ 0) 

0.79 

    0.85 

         0.06  



Orthogonal regressors 
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Variability in Y 

Variability described by X1 Variability described by X2 

Testing for X1 Testing for X2 



Orthogonal regressors 
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Shared variance 

Variability in Y 



Orthogonal regressors 
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Variability in Y 

Testing for   



Orthogonal regressors 
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Variability in Y 

Testing for 𝑋2  



Orthogonal regressors 
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Variability in Y 



Orthogonal regressors 
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Variability in Y 

Testing for 𝑋1  



Orthogonal regressors 
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Variability in Y 

Testing for 𝑋2  



Orthogonal regressors 
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Variability in Y 

Testing for 𝑋1 and/or 𝑋2  



Design orthogonality 
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• For each pair of columns of 
the design matrix, the 
orthogonality matrix 
depicts the magnitude of 
the cosine of the angle 
between them, with the 
range 0 to 1 mapped from 
white to black. 

• If both vectors have zero 
mean then the cosine of 
the angle between the 
vectors is the same as the 
correlation between the 
two variates. 



Correlated regressors 

• We implicitly test for an additional effect only. When testing for 
the first regressor, we are effectively removing the part of the 
signal that can be accounted for by the second regressor → 
implicit orthogonalisation. 
 

 
 
 

• Orthogonalisation = decorrelation. Parameters and test on the 
non modified regressor change. 
Rarely solves the problem as it requires assumptions about 
which regressor to uniquely attribute the common variance. 
→ change regressors (i.e. design) instead, e.g. factorial designs. 
→ use F-tests to assess overall significance. 

• Original regressors may not matter: it’s the contrast you are 
testing which should be as decorrelated as possible from the 
rest of the design matrix  
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x1 

x2 

x1 

x2 

x1 

x2 x^
 

x^
 

2 

1 

2 
x^ = x2 – x1.x2 x1 



Design orthogonality 
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Beware : when there is more than 2 regressors 
(C1,C2,C3...), you may think that there is little 
correlation (light grey) between them, but C1 + 
C2 + C3 may be correlated with C4 + C5   

Black = completely correlated              White = completely orthogonal  

Corr(1,1) Corr(1,2) 
1 2 

1 2 

1 

2 

1 2 

1 2 

1 

2 



Rank-deficient model 

50 

1 0 1 

0 1 1  

1 0 1 

0 1 1 

X = 

Mean Cond 1 Cond 2 

Y = Xb + e    

C1 

C2 

Mean = C1+C2 

Parameters are not unique in general ! 
Some contrasts have no meaning: NON ESTIMABLE 

Example here :  

• c’ = [1 0 0] is not estimable 

 ( = no specific information in the first regressor);  

• c’ = [1 -1 0] is estimable. 



Summary 

• We are implicitly testing additional effect only, so we may 
miss the signal if there is some correlation in the model 
using t tests 

• Orthogonalisation is not generally needed - parameters and 
test on the changed regressor don’t change   

• It is always simpler (when possible !) to have orthogonal 
(uncorrelated) regressors   

• In case of correlation, use F-tests to see the overall 
significance. There is generally no way to decide where the 
« common » part shared by two regressors should be 
attributed to 

• In case of correlation and you need to orthogonolise a part 
of the design matrix, there is no need to re-fit a new model 
: the contrast only should change. 
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Way to proceed 

Prepare your questions. 
ALL the questions ! 

Acquire the data & analyse. 

Not the other way round!!! 

Devise task & stimulus presentation. 

Find a model which 
•allows contrasts that translates 
these questions. 

•takes into account ALL the 
effects (interaction, sessions,etc) 
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