Introduction à la statistique médicale

Statistical Parametric Mapping short course

Course 5:

Evoked response fMRI & Design efficiency

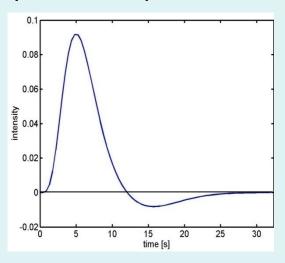
Christophe Phillips, Ir PhD GIGA – CRC *In Vivo* Imaging & GIGA – *In Silico* Medicine

Content

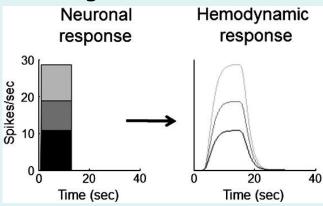
- Evoked response models
- Design efficiency

BOLD response

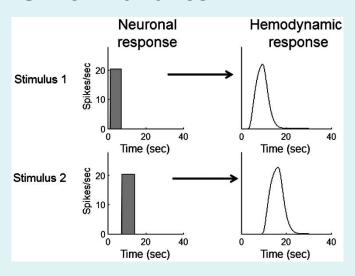
Hemodynamic response function (HRF):



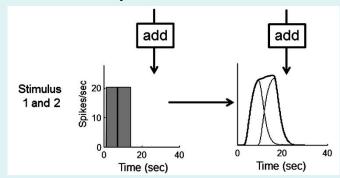
Scaling



Shift invariance



Additivity

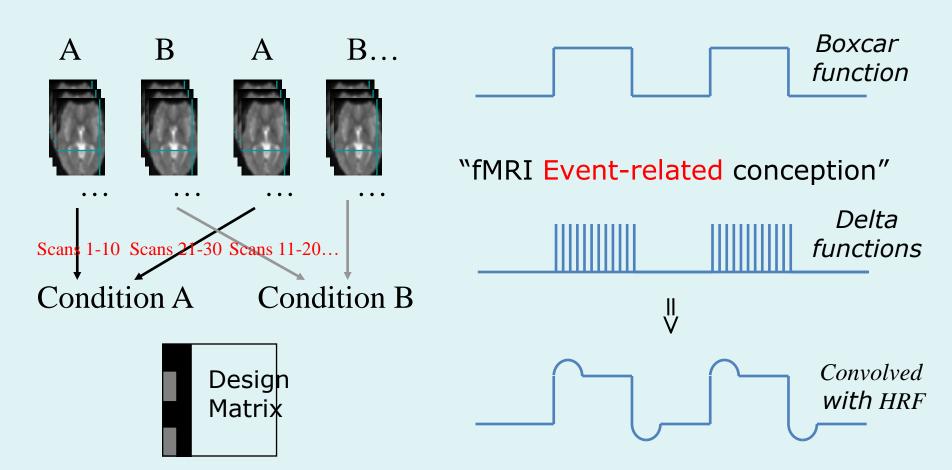


Boynton et al, NeuroImage, 2012.

Epoch vs. event related design

"PET Blocked conception" (scans assigned to conditions)

"fMRI Epoch conception" (scans treated as timeseries)



Randomised trial order
 c.f. confounds of blocked designs

Blocked designs may trigger expectations and cognitive sets

Unpleasant (U)

Pleasant (P)

Intermixed designs can minimise this by stimulus randomisation

Pleasant (P) Unpleasant (U)

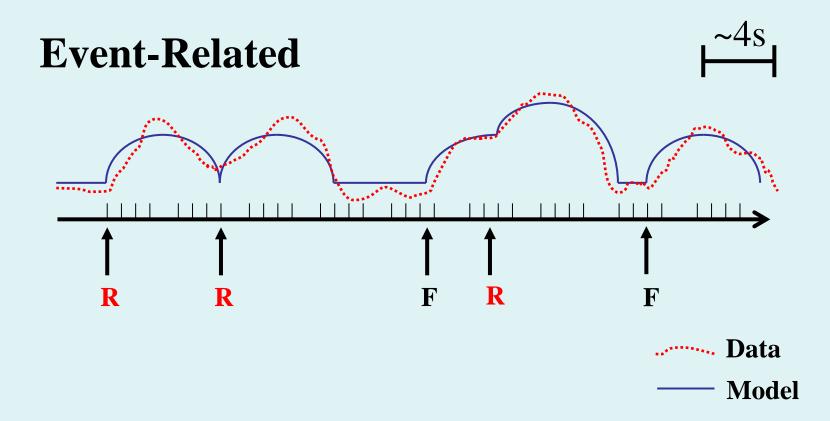
Unpleasant (U)

Pleasant (P)

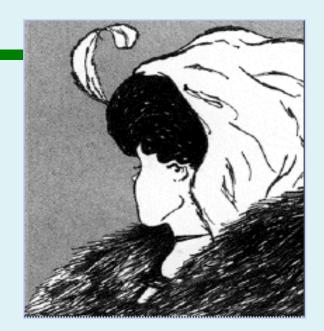
Unpleasant (U)

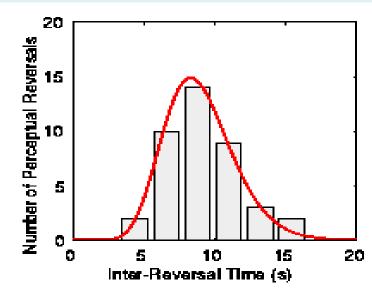
- Randomised trial order
 c.f. confounds of blocked designs
- Post hoc / subjective classification of trials e.g, according to subsequent memory

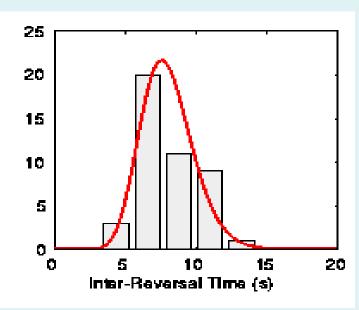
R = Words Later RememberedF = Words Later Forgotten



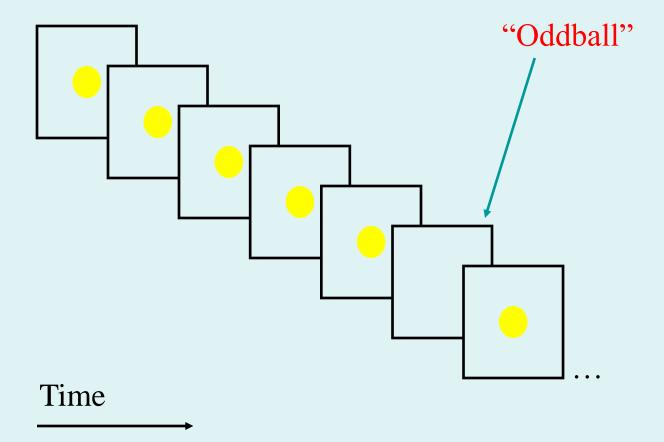
- Randomised trial order
 c.f. confounds of blocked designs
- Post hoc / subjective classification of trials e.g, according to subsequent memory
- Some events can only be indicated (in time)
 e.g, spontaneous perceptual changes







- Randomised trial order
 c.f. confounds of blocked designs
- Post hoc / subjective classification of trials e.g, according to subsequent memory
- Some events can only be indicated (in time)
 e.g, spontaneous perceptual changes
- Some trials cannot be blocked e.g, "oddball" designs



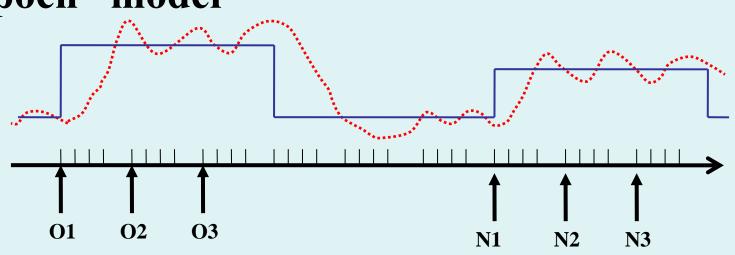
- Randomised trial order
 c.f. confounds of blocked designs
- Post hoc / subjective classification of trials e.g, according to subsequent memory
- Some events can only be indicated (in time)
 e.g, spontaneous perceptual changes
- Some trials cannot be blocked e.g, "oddball" designs
- More accurate models even for blocked designs?
 e.g, "state-item" interactions

Blocked Design

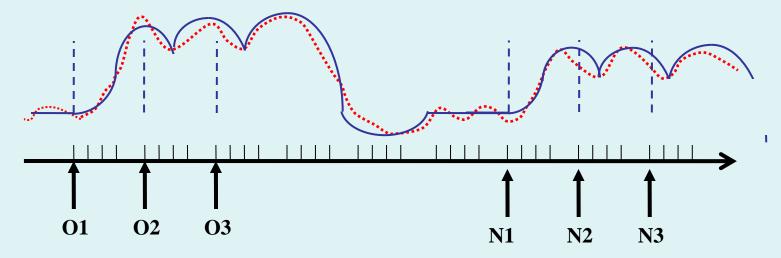
..... Data

"Epoch" model

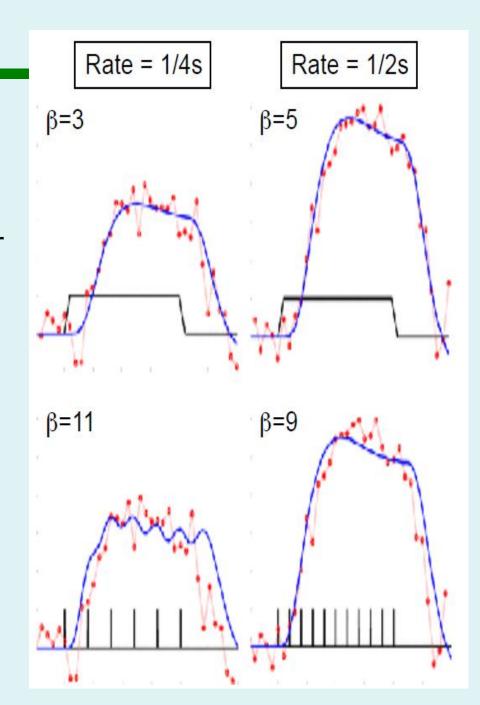
— Model



"Event" model

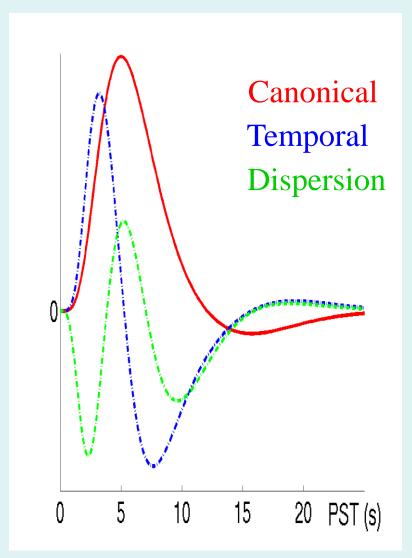


- Blocks of trials can be modeled as boxcars or runs of events
- BUT: interpretation of the parameter estimates may differ
- Consider an experiment presenting words at different rates in different blocks:
 - An "epoch" model will estimate parameter that increases with rate, because the parameter reflects response per block
 - An "event" model may estimate parameter that decreases with rate, because the parameter reflects response per word



Disadvantages of ER designs

- Less efficient for detecting effects than are blocked designs (see later...)
- Some psychological processes may be better blocked (e.g. task-switching, attentional instructions)



• Informed Basis Set (Friston et al. 1998)

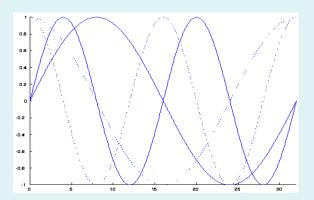
 Canonical HRF (2 gamma functions)

plus Multivariate Taylor
expansion in:
 time (Temporal Derivative)
 width (Dispersion Derivative)

- "Magnitude" inferences via ttest on canonical parameters (providing canonical is a good fit...more later)
- "Latency" inferences via tests on *ratio* of derivative : canonical parameters (more later...)

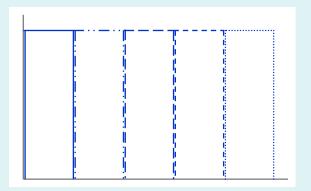
Fourier Set

Windowed sines & cosines Any shape (up to frequency limit) Inference via F-test



 Finite Impulse Response (FIR)

Mini timebins (selective averaging)
Any shape (up to bin-width)
Inference via F-test

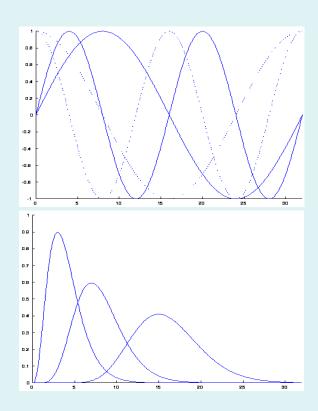


Fourier Set

Windowed sines & cosines
Any shape (up to frequency limit)
Inference via F-test

Gamma Functions

Bounded, asymmetrical (like BOLD) Set of different lags Inference via F-test



Fourier Set

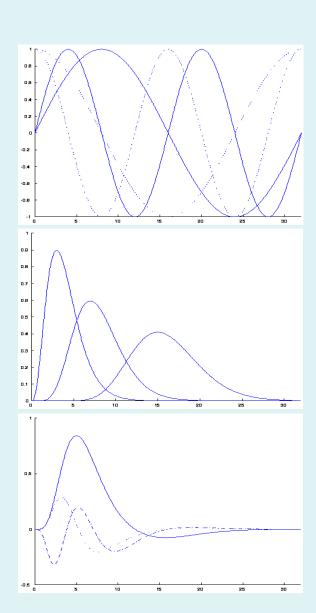
Windowed sines & cosines
Any shape (up to frequency limit)
Inference via F-test

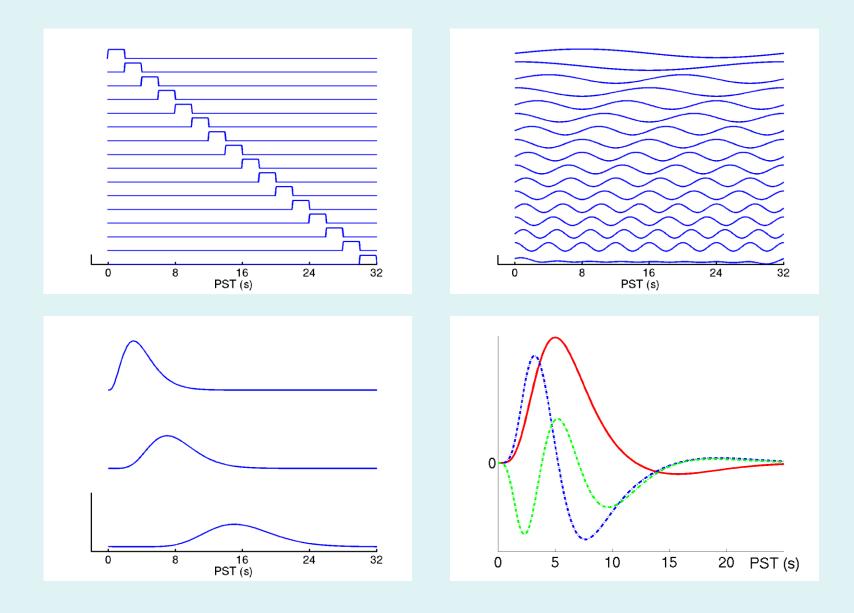
Gamma Functions

Bounded, asymmetrical (like BOLD) Set of different lags Inference via F-test

Informed Basis Set

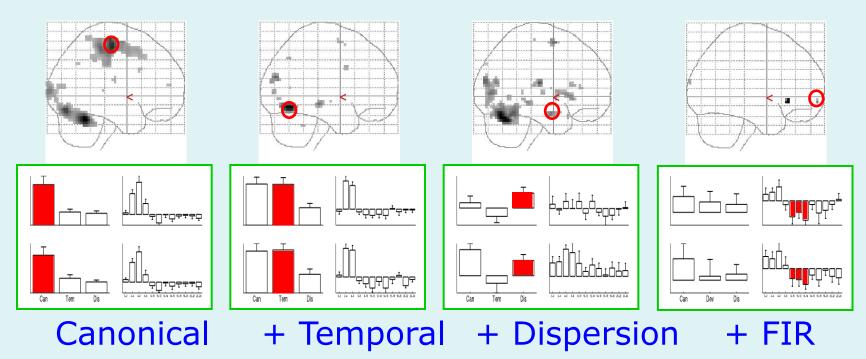
Best guess of canonical BOLD response
Variability captured by Taylor expansion
"Magnitude" inferences via t-test...?





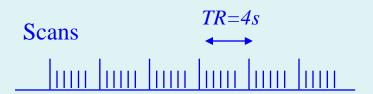
Temporal Basis Functions, which one(s)?

In this example (rapid motor response to faces, Henson et al, 2001)...

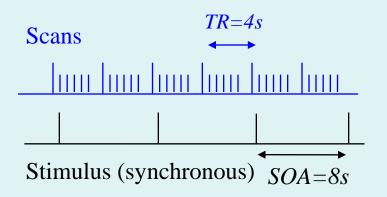


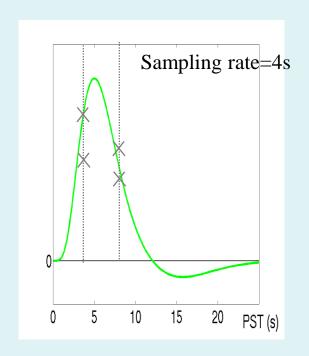
...canonical + temporal + dispersion derivatives appear sufficient ...may not be for more complex trials (eg stimulus-delay-response) ...but then such trials better modelled with separate neural components (ie activity no longer delta function) + constrained HRF (Zarahn, 1999)

 Typical TR for 48 slice EPI at 3mm spacing is ~ 4s

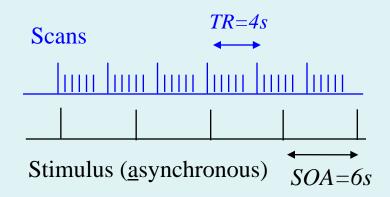


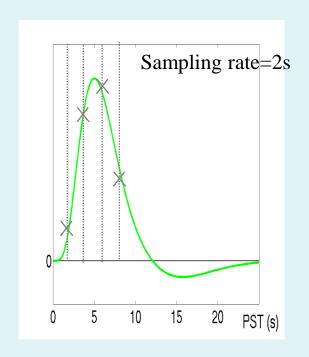
- Typical TR for 48 slice EPI at 3mm spacing is ~ 4s
- Sampling at [0,4,8,12...] post- stimulus may miss peak signal



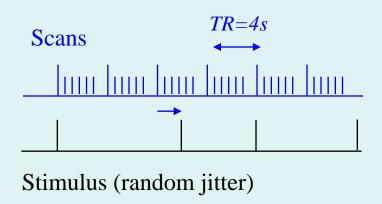


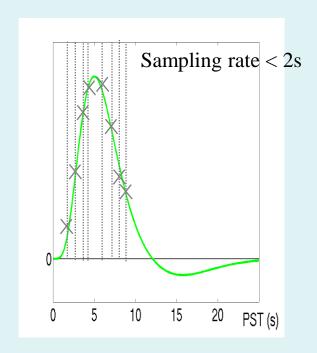
- Typical TR for 48 slice EPI at 3mm spacing is ~ 4s
- Sampling at [0,4,8,12...] post- stimulus may miss peak signal
- Higher effective sampling by:
 - 1. Asynchrony, e.g. SOA=1.5TR





- Typical TR for 48 slice EPI at 3mm spacing is ~ 4s
- Sampling at [0,4,8,12...] post- stimulus may miss peak signal
- Higher effective sampling by:
 - 1. Asynchrony, e.g. SOA=1.5TR
 - 2. Random Jitter, e.g. $SOA = (2 \pm 0.5)TR$





BOLD Response Latency (Linear)

• Assume the real response, r(t), is a scaled (by α) version of the canonical, f(t), but delayed by a small amount dt:

$$r(t) = \alpha f(t+dt) \sim \alpha f(t) + \alpha f'(t) dt$$
 1st-order Taylor

• If the fitted response, R(t), is modelled by the canonical + temporal derivative:

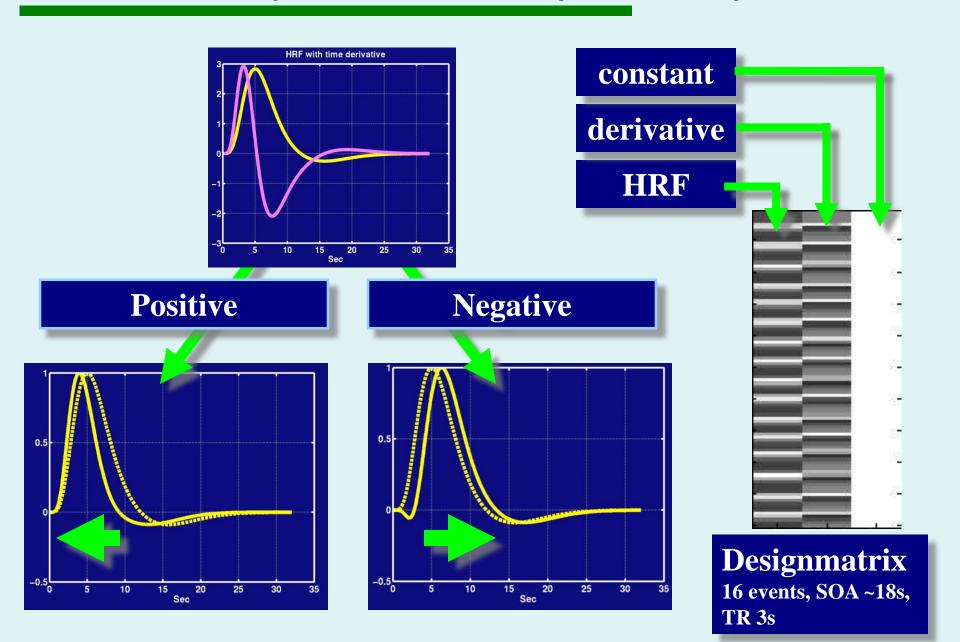
$$R(t) = \beta_1 f(t) + \beta_2 f'(t)$$
 GLM fit

• Then canonical and derivative parameter estimates, β_1 and β_2 are such that:

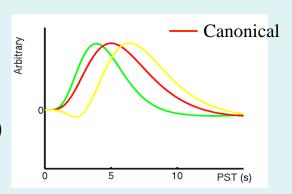
$$\alpha = \beta_1$$
, $dt = \beta_2/\beta_1$

• i.e. latency can be approximated by the ratio of derivativeto-canonical parameter estimates (within limits of firstorder approximation, +/- 1s)

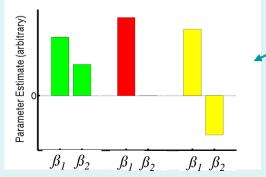
BOLD Response Latency: example



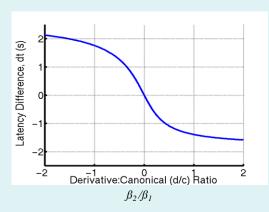
BOLD Response Latency (Linear)

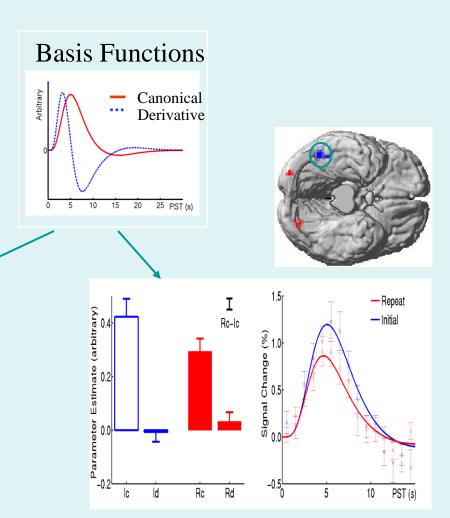


Parameter Estimates



Actual latency, dt, vs. β_2/β_1





Face repetition reduces latency as well as magnitude of fusiform response

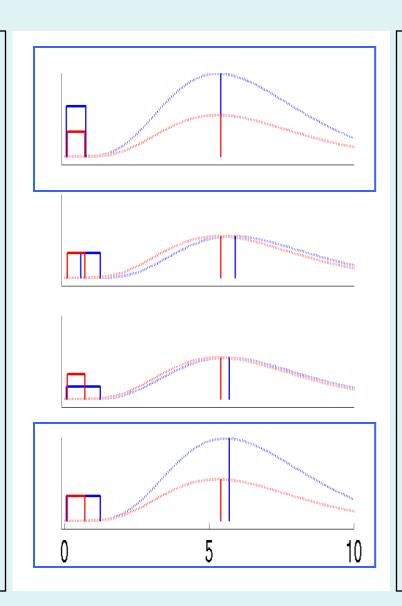
Neural Response Latency

A. Decreased

B. Advanced

C. Shortened (same integrated)

D. Shortened (same maximum)



BOLD

A. Smaller Peak

B. Earlier Onset

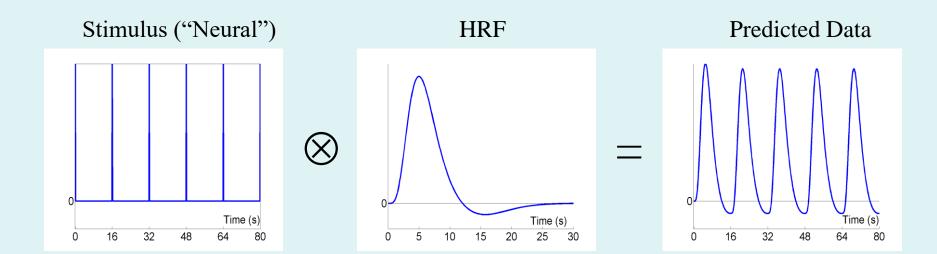
C. Earlier Peak

D. Smaller Peak and earlier Peak

Content

- Evoked response models
- Design efficiency

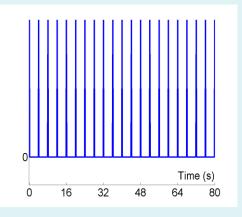
Fixed SOA = 16s



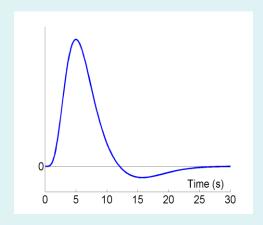
Not particularly efficient...

Fixed SOA = 4s

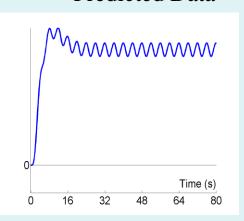
Stimulus ("Neural")



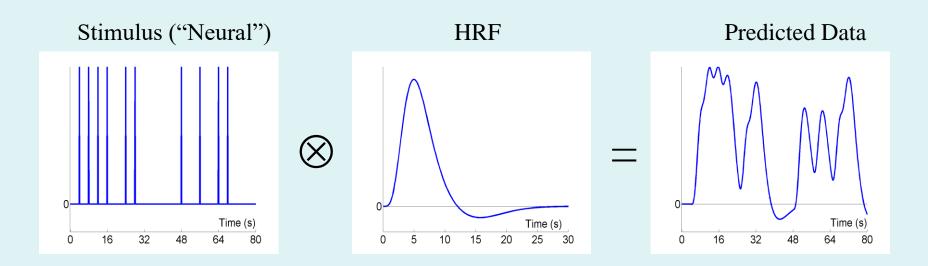
HRF



Predicted Data

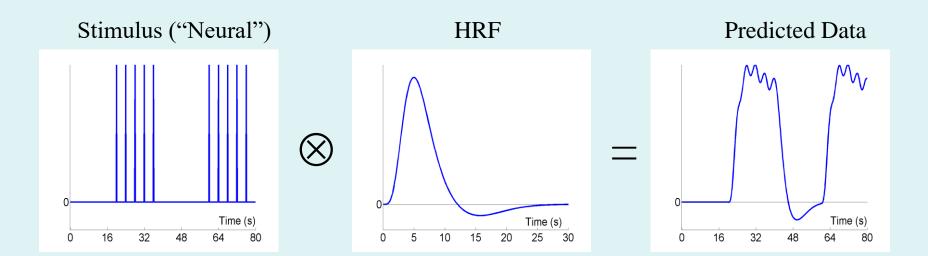


Randomised, $SOA_{min} = 4s$



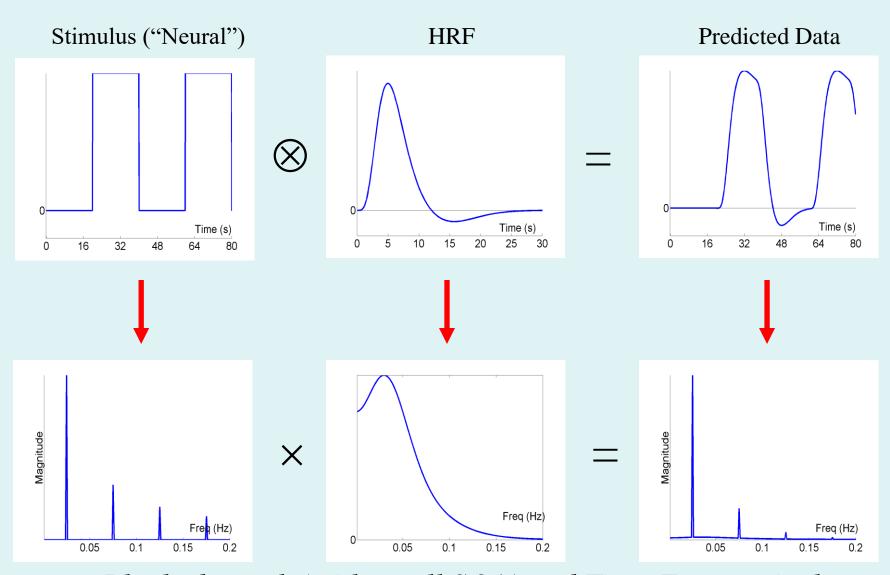
More Efficient...

Blocked, $SOA_{min} = 4s$



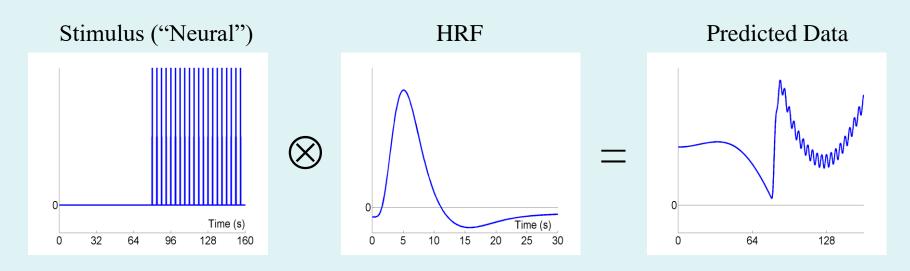
Even more Efficient...

Blocked, epoch = 20s

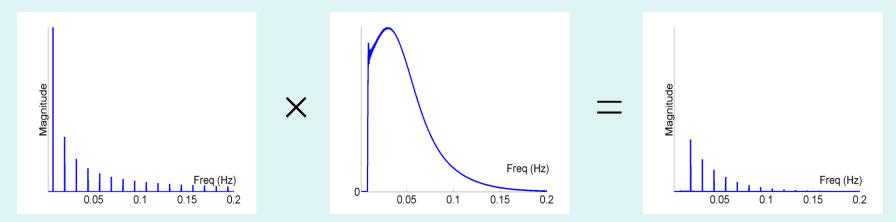


Blocked-epoch (with small SOA) and Time-Freq equivalences

Blocked (80s), SOA_{min}=4s, highpass filter = 1/120s

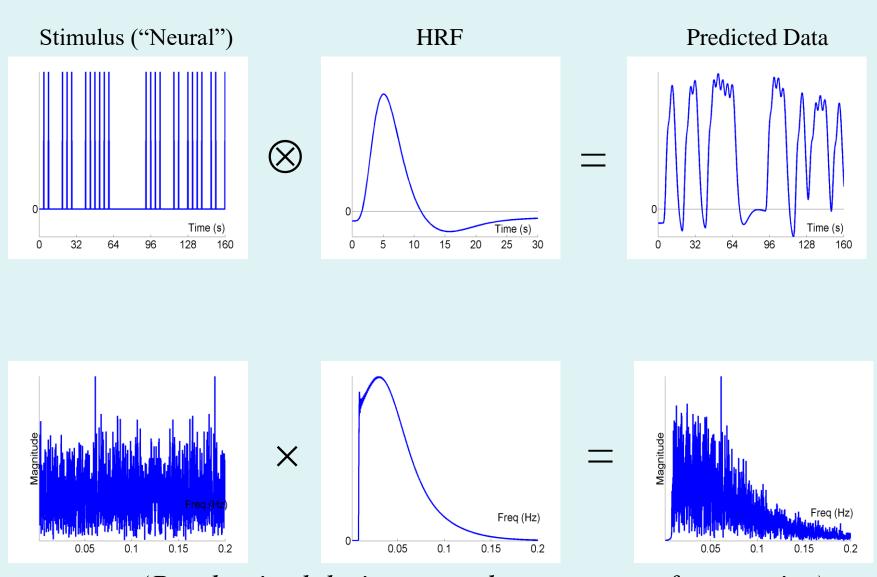


"Effective HRF" (after highpass filtering) (Josephs & Henson, 1999)



Don't have long (>60s) blocks!

Randomised, SOA_{min}=4s, highpass filter = 1/120s



(Randomised design spreads power over frequencies)

Design Efficiency

Maximise efficiency by maximising t, by minimising the squared variance:

$$t = \frac{c^T \beta}{\sqrt{\text{var}(c^T \beta)}}$$
 X: design matrix c: contrast vector β : beta vector

Assuming that the error in our model is 'iid', each observation is drawn independently from a Gaussian distribution:

$$b \sim N(b(S^{2}(X^{T}X)^{-1}))$$

 $var(c^{T}b) = S^{2}c^{T}(X^{T}X)^{-1}c$

Assuming σ is independent of our design, taking a fixed contrast we can only alter our design matrix to improve efficiency.

Formal definition of design efficiency minimises variance:
$$e \gg \frac{1}{\sqrt{c^T (X^T X)^{-1} c}}$$
 Given the contrast of interest, minimise covariance in the design matrix

Efficiency can be estimated before using the design