
Introduction to computer science:
historical perspective, computer structure,

operating systems & languages

GIGA Doctorate School

Christophe Phillips, Ir Ph.D.

▶ Historical perspective

▶ Computer structure

▶ Operating systems

▶ Programming languages

Program

"1. Start simple. 2. Get it to work. 3. Then, add complexity."

- Tom Bredemeier

"One of the best programming skills you can have is knowing
when to walk away for awhile."

- Oscar Godson

Some wisdom…

https://twitter.com/CodeWisdom

https://twitter.com/CodeWisdom
https://twitter.com/CodeWisdom

▶ Historical perspective

▶ Computer structure

▶ Operating systems

▶ Programming languages

Program

Computer science did NOT suddenly appear during World
War II out of a genius mind.

Three parallel streams:
▶ Calculation instruments, from abacus to Pascal’s mechanical calculator

▶ Mathematical logic, from al-Khwarizmi (VIIIth century) to Alan Turing (XXth century)

▶ Automats, from antiquity (e.g. Hero of Alexandria’s 1st vending machine) to
‘Jacquard loom’, and great watch & clock makers

Historical perspective

▶ 1837, the “Analytical Engine”,
described by Charles Babbage
= 1st mechanical general-purpose computer, including:
- arithmetic logic unit + integrated memory
- control flow in the form of conditional branching and loops

▶ 1843, “algorithm” for the Analytical Engine,
by Ada Lovelace
= 1st software (to calculate Bernoulli numbers)

- set of instructions to solve problems of any complexity
- symbolic representation by numbers of letters, musical

notes, etc.

Historical perspective

https://en.wikipedia.org/wiki/Bernoulli_number
https://en.wikipedia.org/wiki/Bernoulli_number

▶ 1943-1945, Colossus computer, UK.

▶ 1945-1956, ENIAC (Electronic Numerical

Integrator and Computer), USA.

Programs hard coded into the machines
with 10000’s of switches and plugs!

(…and bugs were real!)

Historical perspective

▶ Proposed by Von Neumann in 1945
(unifies Babbage’s Analytical Engine
and abstract Turing machine)

▶ Fundamental ideas:
- Bring input, output and program in “memory unit”

- Operate only on this memory

 Stored-program computer keeps both program instructions
and data in read-write, “random-access memory” (RAM)!

Von Neumann architecture

▶ In the 1950’s & 1960’s, tubes are replaced by transistors then

integrated circuits.
 higher density + more reliable
 + less energy consumption (heat!)

▶ In 1965, Moore’s law:

Hardware innovations

The number of transistors in an IC
doubles every 18 months!

1960’s & 1970’s, development of :
▶ mainframes

- Large centralised infrastructure
 high performance

- Passive terminals
 submit ‘batches’

▶ mini-computers

- All-in-one machine
 direct interaction

- Small and cheap (actually still pretty big and expensive…)

Mainframes vs. mini-computers

IBM mainframe at NASA

In 1971, first Intel microprocessor

 All main elements of a computer in 1 integrated circuit
 & no wiring, except on ‘motherboard’

 the micro-computer

Personal Computer (PC)

▶ 1977, TRS-80

▶ 1979, Apple 2 with 1st spreadsheet software

▶ 1982, Commodore 64  gaming

▶ 1982, IBM-PC with
- Intel “x86” architecture (still used now)

- MS-DOS from Microsoft

Micro-computer

In 1975, Altair 8800 (Bill Gates & Paul Allen)
& Apple 1 (Steve Jobs and Steve Wozniak)

▶ Software, originally part of the computer and thus “free”

▶ Increasing distinction between “hardware” and “software”

▶ Since the 70’s a 80’s, more standardized hardware

 standardized and specific software:
› operating system: Unix, MS-Dos (later on Windows), Macintosh

 System 1 (later on Mac OS), Linux,…

› applications: spreadsheet, text editing, games, image & audio
 processing, high-level programming,…

Software industry

Definition:

an algorithm is an unambiguous specification of
how to solve a class of problems.

An algorithm
▶ expressed within a finite amount of space and time
▶ in a well-defined formal language for calculating a function.
▶ starting from an initial state and initial “input”,
▶ the instructions describe a computation that, when executed, proceeds

through a finite number of well-defined successive states,
▶ eventually producing “output” and terminating at a final ending state.

Algorithm

Turing machine

The (abstract) Turing machine models a machine with

▶ tape = infinite series of cells with 1’s or 0’s

▶ control unit = finite set of elementary instructions

▶ Input/output = to read, write or move the tape

Example: “in state 42, if the symbol seen is 0, write a 1; if the symbol seen is 1,
change into state 17; in state 17, if the symbol seen is 0, write a 1 and change
to state 6; etc.”

Given any computer algorithm, a Turing machine capable of
simulating that algorithm's logic can be constructed.

▶ https://en.wikipedia.org/wiki/Abacus
▶ https://en.wikipedia.org/wiki/Mechanical_calculator
▶ https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
▶ https://en.wikipedia.org/wiki/Alan_Turing
▶ https://en.wikipedia.org/wiki/Jacquard_loom
▶ https://en.wikipedia.org/wiki/Hero_of_Alexandria
▶ https://en.wikipedia.org/wiki/Charles_Babbage
▶ https://en.wikipedia.org/wiki/Analytical_Engine
▶ https://en.wikipedia.org/wiki/Mechanical_computer
▶ https://en.wikipedia.org/wiki/Ada_Lovelace
▶ https://en.wikipedia.org/wiki/Bernoulli_number
▶ https://en.wikipedia.org/wiki/Colossus_computer
▶ https://en.wikipedia.org/wiki/Algorithm
▶ https://en.wikipedia.org/wiki/Turing_machine
▶ https://en.wikipedia.org/wiki/Von_Neumann_architecture
▶ https://en.wikipedia.org/wiki/Moore%27s_law
▶ https://en.wikipedia.org/wiki/Computer

References

https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Mechanical_calculator
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Jacquard_loom
https://en.wikipedia.org/wiki/Jacquard_loom
https://en.wikipedia.org/wiki/Hero_of_Alexandria
https://en.wikipedia.org/wiki/Hero_of_Alexandria
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Mechanical_computer
https://en.wikipedia.org/wiki/Mechanical_computer
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Bernoulli_number
https://en.wikipedia.org/wiki/Colossus_computer
https://en.wikipedia.org/wiki/Colossus_computer
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Moore's_law
https://en.wikipedia.org/wiki/Moore's_law
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer

▶ Historical perspective

▶ Computer structure

▶ Operating systems

▶ Languages

Program

Peripherals:
screen, keyboard, mouse, speaker, printer, scanner, power supply,… plugged
to the “motherboard”

Outside the “motherboard”

The “motherboard”
▶ CPU = microprocessor

- executes the instructions.
- includes very fast local memory locale, aka “cache”

▶ RAM = central memory
- quickly read/write instructions and data
- lost when power is off

▶ GPU (Graphics Processing Unit)
- like CPU but parallelized infrastructure
- generates and stores image frames

▶ Northbridge = connecting fast components
▶ Southbridge = handles slower input/output

- hard-drives (internal/external)
- USB peripherals (keyboard, mouse, USB stick,…)
- network connexions, incl. Wi-Fi & cable

▶ Inter-connexion through “data bus”

▶ RAM,
- fast but not persistent  used by microprocessor (data & operations)
- limited to a few Gb

▶ Hard drive
- slower but persistent  used to store data, code, OS
- up to several Tb

▶ Cache
- inside the CPU  super fast but built in

▶ ROM/BIOS (Basic Input Output System)
- boot firmware and power management firmware

Different types of memory

Get some
▶ multi-core processor
▶ higher clock speed
▶ larger RAM
▶ faster data transfer

Caveats
▶ need specific software/compiler to parallelize operations
▶ depend on nature of data and processing pipeline
▶ depend on mass-storage solution (access & r/w time!)

Faster & more power

▶ https://en.wikipedia.org/wiki/Computer_architecture

▶ https://en.wikipedia.org/wiki/Computer_hardware

▶ https://en.wikipedia.org/wiki/Graphics_processing_unit

▶ https://en.wikipedia.org/wiki/Central_processing_unit

▶ https://en.wikipedia.org/wiki/Bus_(computing)

▶ https://en.wikipedia.org/wiki/BIOS

▶ https://en.wikipedia.org/wiki/Multi-core_processor

▶ “Eléments d'informatique médicale”, RADI2008-1, Sébastien Jodogne

References

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor

▶ Historical perspective

▶ Computer structure

▶ Operating systems

▶ Programming languages

Program

An “operating system” (OS)
= system fundamental software to
1. manage computer hardware and software resources, and
2. provide common services for computer programs:

OS definition

▶ Process management.
allocate resources to processes, enable processes to share and exchange information, protect the resources of each process
from other processes and enable synchronization among processes

▶ Memory management.
management of computer memory resource

▶ File system.
controls how data is stored and retrieved

▶ Device drivers.
operates or controls a particular type of device attached to a computer

▶ Networking.
allows “nodes” to share resources

▶ Interrupts.
signal to the processor emitted by hardware or software indicating an event that needs immediate attention

▶ Security.
protection of computer systems from theft or damage to their hardware, software or electronic data, as well as from
disruption or misdirection of the services they provide

▶ I/O.
communication between an information processing system, such as a computer, and the outside world, possibly a human or
another information processing system

OS tasks

▶ Windows

▶ Mac OS

▶ Linux

▶ (Unix)

▶ (Android & iOS on smartphones/tablets)

Current main players

▶ Open-source OS, since 1991
 free to use, copy, modify but not to sell
 multiple distributions and flavours
 supported by a large community

▶ On PC:
- now (almost) as easy to use as a Win/Mac with simple GUI
- typically runs open-source software: Open Office, Gimp,…
- usually more secured than Windows/Mac

▶ On servers & clusters
- Standard OS  need to know command line

Linux

▶ 1st version in 1984

▶ Since 2001, based on a Unix
kernel

▶ Proprietary to Apple, i.e. closed

▶ With GUI and command line

▶ 2nd most common OS on PC’s.

▶ Usually more secure than
Windows OS but limited to
proprietary (and €€€)
hardware…

▶ 1st version in 1985

▶ Originally graphical operating
system shell for MS-DOS

▶ Proprietary to Microsoft, i.e.
closed & €€€

▶ Other MS software, like Office,
are €€€

▶ Most common OS on PC’s

▶ More exposed to security issues
but runs one all sorts of
hardware built

Mac OS vs Windows

Use “virtual machines” (VM) to execute
▶ an entire OS, with applications, on a virtual hardware (“system VM”)

▶ a program in a platform-independent environment (“process VM”)

on the same physical machine, i.e. original hardware and OS.

 easy to create, copy, kill, relaunch, distribute,…

For example:
▶ System VM with ‘VirtualBox’

▶ Process VM with ‘Docker’ or ‘Singularity’

All OS’s in one computer

▶ https://en.wikipedia.org/wiki/Operating_system

▶ https://en.wikipedia.org/wiki/Linux

▶ https://en.wikipedia.org/wiki/MacOS

▶ https://en.wikipedia.org/wiki/Microsoft_Windows

▶ https://en.wikipedia.org/wiki/Virtual_machine

▶ https://www.virtualbox.org/

▶ https://www.docker.com/

▶ https://sylabs.io/docs/

References

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Virtual_machine
https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.docker.com/
https://www.docker.com/
https://sylabs.io/docs/
https://sylabs.io/docs/

▶ Historical perspective

▶ Computer structure

▶ Operating systems

▶ Programming languages

Program

"Programming: when the ideas turn into the real things."

- Maciej Kaczmarek

"The most important single aspect of software development is to
be clear about what you are trying to build."

- Bjarne Stroustrup

Some wisdom…

https://twitter.com/CodeWisdom

https://twitter.com/CodeWisdom
https://twitter.com/CodeWisdom

▶ C/C++

▶ Java

▶ Python

▶ R

▶ Perl

▶ Matlab/Octave

▶ Julia

Classic ones for scientific computing

NOTE: There exist 1000’ of them!!!

▶ closer to hardware vs. relying on intermediate software layer

▶ more complicated vs. easier code writing

▶ tedious vs. more abstract

▶ faster and efficient vs. usually a bit less so

A “compiler” or “interpreter” translates code to ‘machine code’
to create an executable program or execute it.

Low vs. high level of programing

The perfect Vanilla Cake:
1. Preheat oven to 350º F.

2. Prepare three 8-inch cake pans by spraying with baking spray or buttering and lightly flouring.

3. Combine flour, baking powder, baking soda, and salt in a large bowl. Whisk through to combine. Set aside.

4. Cream butter until fluffy and then add sugar. Cream together for about 8 more minutes.

5. Add eggs, one at a time, and mix just until combined.

6. Add flour mixture and buttermilk, alternately, beginning and ending with flour.

7. Add vanilla and mix until thoroughly combined.

8. Divide among pans and bake for 25-30 minutes until edges turn loose from pan and toothpick inserted into
middle of cake comes out clean.

9. Remove from the oven and allow to cool for about 10 minutes.

10. Turn out onto wire cooling racks and allow to cool completely.

High level program example

▶ Compiler  generate machine code from source code
- typically lower-level language

- no cross-platform support for exec code (i.e. need to recompile on specific OS)

▶ Interpreter  step-by-step executors of source code
- typically higher-level language

- easy (at least should be easier) cross-platform

▶ Both available for most high-level language

▶ Can be a mix of both

Compiled vs. Interpreted language

▶ Wrapping  relies on other bits of code
- typically higher-level language

- glues and pipelines different operations

▶ Number crunching  does the job on some data
- typically lower-level language

- takes in data and parameters to calculate an output

▶ Both available for most high-level language

▶ Can be a mix of both

Wrapping vs. number crunching

C
▶ Started in 1973, standardized in 1989

▶ Low level language (e.g. memory management)
 very efficient when compiled

▶ Portable on any hardware and OS

C++
▶ Based on C with added object-oriented & other programing features

▶ Started in 1979, standardized since 1998

C and C++

▶ High-level general-purpose language (class-based and object-oriented)

▶ ideally "write once, run anywhere" (WORA)

▶ applications are typically compiled to bytecode that can run on any “Java
Virtual Machine” (JVM) regardless of computer architecture

▶ open-source compiler (GNU GPL)

▶ fairly stable

Java

▶ started in 1991, latest version (3.9.7) out in August 2021.

▶ interpreted high-level programming language for general-purpose
programming

▶ dynamic type system, object-oriented and automatic memory management.

▶ relies on large and comprehensive standard library.

▶ interpreters available for many OS’s.

▶ open source with community-based development model

▶ still evolving: main version
(https://fr.wikipedia.org/wiki/Python_(langage)#Historique_des_versions) and libraries

Python

https://fr.wikipedia.org/wiki/Python_(langage)#Historique_des_versions)
https://fr.wikipedia.org/wiki/Python_(langage)#Historique_des_versions)

▶ started in 1992, stable since 2000

▶ open source with community-based development model

▶ high-level interpreted language, free software environment (GNU GPL)

▶ mostly used among statisticians and data miners for developing statistical
software and data analysis.

▶ pre-compiled binary versions available for most OS’s.

▶ command line interface, plus graphical front-ends and IDE’s (“Integrated
Development Environments).

R

▶ started in 1987, v5.32 released in June 2020

▶ originally general-purpose Unix scripting language to make report
processing easier

▶ Built in C, free software environment (GNU GPL)

▶ very good at text processing without the arbitrary data-length limits

▶ high-level, general-purpose, interpreted, dynamic programming languages

▶ nicknamed the "duct tape”: glue language and perceived inelegance

Perl

▶ started in 1984 by MathWorks, based on C and Lapack libraries

▶ multi-paradigm numerical computing environment, good at matrix
manipulations, implementation of algorithms

▶ can interface with programs written in C, C++, Java, and Python.

▶ large number of users-contributed (open source) packages

▶ but proprietary programming language  €€€ license

▶ fairly stable (back compatibility!)

▶ Octave = free alternative to Matlab but not 100% compatible or as
efficient

Matlab/Octave

▶ started in 2012, v1.6.3 released in September 2021

▶ free open-source language, runs on most OS’s

▶ high-level general-purpose dynamic programming language

▶ originally designed for high-performance numerical analysis and
computational science

▶ allows concurrent, parallel and distributed computing, and direct calling of
C and Fortran libraries

▶ includes efficient libraries for floating-point calculations, linear algebra,
random number generation, and regular expression matching.

▶ other libraries are available from the community

Julia

"The only way to learn a new programming language
 is by writing programs in it."

- Dennis Ritchie

Still

▶ some algorithm/coding principles remain the same across languages

▶ pick the language of your community/appropriate for your data

▶ do not reinvent the wheel

Some wisdom…

https://twitter.com/CodeWisdom

https://twitter.com/CodeWisdom
https://twitter.com/CodeWisdom

"The good news about computers is that
they do what you tell them to do.

The bad news is that
they do what you tell them to do."

- Ted Nelson

Some further wisdom…

https://twitter.com/CodeWisdom

https://twitter.com/CodeWisdom
https://twitter.com/CodeWisdom

▶ https://addapinch.com/best-vanilla-cake-recipe/

▶ https://en.wikipedia.org/wiki/Software

▶ https://en.wikipedia.org/wiki/C_(programming_language)

▶ https://en.wikipedia.org/wiki/C%2B%2B

▶ https://en.wikipedia.org/wiki/Java_(programming_language)

▶ https://en.wikipedia.org/wiki/Python_(programming_language)

▶ https://en.wikipedia.org/wiki/R_(programming_language)

▶ https://en.wikipedia.org/wiki/Perl

▶ https://en.wikipedia.org/wiki/MATLAB

▶ https://en.wikipedia.org/wiki/GNU_Octave

▶ https://en.wikipedia.org/wiki/Julia_(programming_language)

▶ https://twitter.com/CodeWisdom

References

https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://addapinch.com/best-vanilla-cake-recipe/
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/GNU_Octave
https://en.wikipedia.org/wiki/GNU_Octave
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://twitter.com/CodeWisdom

Thank you for your attention!

