
Code versioning & Git 

GIGA Doctorate School 

Christophe Phillips, Ir Ph.D. 



▶ Why “Version Control” ? 

▶ Basics of Version Control (VC) 

▶ Git as a VC solution 

▶ Being Git practical with GitHub/GitLab 

▶ Conclusions & reference 

Program 



In software engineering, version control (aka. revision control, 

source control, or source code management) is a class of systems 
responsible for managing changes to computer 
programs, documents, large web sites, or other 

collections of information. 

 

i.e. organize and control revisions. 

What is “Version Control” 

https://en.wikipedia.org/wiki/Version_control 



▶ Why “Version Control” ? 

▶ Basics of Version Control (VC) 

▶ Git as a VC solution 

▶ Being Git practical with GitHub/GitLab 

▶ Conclusions & reference 

Program 



Real life example 
▶ Hey can you send me the source of that article XYZ? 

▶ Sure, …hum, well, … 

article.tar.bz2 There it is! 

article_final.tar.bz2 No this one is more recent 

article_final2.tar.bz2 Wait, this is one even more so 

article_last.tar.bz2 Hold on, that should be it 

article_20180705_bis.tar.bz2 Or maybe… 

▶ Poor man’s versioning  date & comment in archive file name 

 BUT you do not know what is different from one version to the other!!! 

 

 

Example 1, “last version?” 



Real life example #2, 

Big international conference in October, with abstract/short-
paper deadline in March 
▶ in March create results, plots & graphs + write submission 

▶ from March to October, keep on working on code and data 

▶ in September, prepare your oral presentation or poster… 

- can you reproduce results, plots & graphs from March? 

- if different, which one is “correct” ? And why? 

- code difference, improvement or new bug? 

Example 2, “conference abstract and presentation?” 



▶ One person in charge 
Send an email with: 

“Changes made: 
- updated help part of file1.m 
- corrected a bug in file2.m 
- Added a new feature to handle .png images in file3.m 

See the attached files.” 

▶ One shared file, e.g. through Dropbox or on server 

  Incompatible parallel versions, overwritten files, lost changes,… 
depending on “who saved last” 

 And still no idea of what differs across versions! 

Example 3, “collaborate?” 



A simple way to “shoot oneself in the foot”: 
1. Take a snap shot archive of current stable version 

commonly “copy your code in a new folder”. 

2. Begin implementing your new crazy experimental idea. 

3. Fix some bugs in old code, revealed during testing. 

4. Your idea was crap, discard experimental version. 

5. Start back from stable version archive. 

6. You lost your bug fixes, which also applied to the stable version...  
Or was it ? 

 

Example 4, “mess with yourself!” 



Key questions: 
▶ Do you work in a team? 
▶ Has it ever happened that you were working on a file, and someone else was 

working on the same file at the same time? Did you lose your changes to that file 
because of that? Or ended up with incompatible code? 

▶ Have you ever saved a file, and then wanted to revert the changes you made? 
Have you ever wished you could see what a file looked like some time ago? 

▶ Have you ever found a bug/error in your project and wanted 
to know when that bug got into your files? 

If any “Yes”, then use a VC system ! 

 

Why Version Control 



▶ Why “Version Control” ? 

▶ Basics of Version Control (VC) 

▶ Git as a VC solution 

▶ Being Git practical with GitHub/GitLab 

▶ Conclusions & reference 

Program 



▶ One central repository, on a server. 

▶ (Stores the files and their history.) 

▶ Many clients, i.e. users, connecting 

to the repository.  

▶ Each client has one or more working 

copies, i.e. a local copy of the files, 

where changes are made 

Centralized file management 



File sharing & Collaboration Problem 

Centralized VC model  



Locking solution 



▶ One central repository, on a server. 
▶ Stores the files and their history.  
▶ Many clients, i.e. users connecting to the repo  
▶ Each client has one or more working copies, 

i.e. a local copy of the files, where changes are 
made 
 

▶ A revision identifies a point in time of 
the repo, it is denoted by a number. 

Centralized VC model 



Copy-Modify-Merge Solution 



Copy-Modify-Merge Solution 



When updating files are “updated” automatically. 

▶ Merged files: 
 all changes, yours & from server, are automatically merged into your files 

(if possible). 

  manual check recommended… 

▶ Conflicted files: 
 your changes and those on the server are NOT compatible, no automatic 

merging possible 

  manual intervention necessary! Your responsibility. 

File merging & conflicts 



When updating your working copy:  
▶ If some files have changed both in the repository and in your 

working copy, there can be a conflict 

▶ It is your responsibility to fix conflicts, by inspecting the 

diverging changes and 

- choose your own version, or  

- choose repository version, or 

- choose previous version, or 

- mix both versions 

 

Resolving conflicts 



▶ Merging works on text-based files (code/document) 

▶ With binary files (images, .ppt, .pdf, .doc, .xls, …) 

    Updating overwrites the file…  

   but previous versions still available in history! 

▶ Use simple text (.txt), Markdown (.md), comma-/tab-
separated values (.csv/.tsv) or JSON (.json) files instead of 
Word or Excel files ! 

Binary files… 



▶ Create repository or get code from repository: 
- check out/clone code, or update code 

▶ Work on your code/files: 
- bug fixes and/or new features 

▶ Publish your changes to the repository 
- re-updating and fixing conflicts, if necessary 

Note: 
▶ Split your commits into logical steps 
▶ Add description!!! 

 

How to… 



“…a line of development that exists independently of another 
line, yet still shares a common history if you look far enough back 
in time. A branch always begins life as a copy of something, and 

moves on from there, generating its own history.” 

 

Code branch 



▶ Work on a branch as you would on any other folder,  
e.g. code_v1, code_v2,… 

▶ File histories in branches also stored! 

 

Branching 



= synchronizing two branches 

▶ When developing a branch, you’ll want to synch with “main 
trunk” from time to time (e.g. for bug fixes) 

▶ When merging, you can encounter conflicts, to be resolved as 
before  

▶ If you want to integrate a branch back to “main trunk”, you 
can merge it back (e.g. adding new features). 

 

Branch merging 



▶ Why “Version Control” ? 

▶ Basics of Version Control (VC) 

▶ Git as a VC solution 

▶ Being Git practical with GitHub/GitLab 

▶ Conclusions & reference 

Program 



▶ currently the most popular distributed versioning system 

▶ free open-source software 

▶ cross-platform (originally for Linux but now also on MacOS and Windows) 

▶ very efficient, very powerful but can be very complex 

▶ some GUIs and IDEs plugins  

▶ no global revision numbers, “hashes” instead 

▶ created by Linus Torvalds, 1st release in 2005 

 

 

What is “Git” ? 



Pro’s 
▶ Every working copy is a full backup of the data 

▶ You can work off-line 

▶ You can do micro-commits 

▶ Allows private work, eases experimental jump in 

Cons 
▶ More complex (decentralized  “parallel worlds”)  

▶ Less control on project evolution 

▶ Less sharing? 

Git, pro’s & con’s 
Decentralized model 



G
it

 C
h

e
at

 S
h

e
et

 



▶ If the git repository only exist on your 
machine or one single computer/drive, 
then  
- you are at risk of losing everything! 

- no easy collaboration 

  use an external server to sync’ with 

▶ Only text files or light (<10MB) binary files 

  No dataset! (use other tools) 

 

 

Git, notes 
Decentralized model 



▶ Why “Version Control” ? 

▶ Basics of Version Control (VC) 

▶ Git as a VC solution 

▶ Being Git practical with GitHub/GitLab 

▶ Conclusions & reference 

Program 



https://github.com  
https://gitlab.uliege.be/  

▶ Git   
- “version control system” software 
- language with its commands 

▶ GitHub.com (& GitLab.com) 

- web-based Git repository hosting system  
- servers from a private company 

▶ GitLab.uliege.be 
- web-based Git repository hosting system 
- hosted at ULiège.  

Git & GitHub/GitLab 

https://github.com/
https://github.com/
https://gitlab.uliege.be/
https://gitlab.uliege.be/
https://gitlab.uliege.be/


▶ Code versioning  
+ branching, merging, releases 

And more… 

▶ Code documentation and Wiki 
 build knowledge for the team 

▶ Issue tracking  
 discuss problems & requests in a forum, keep track of decisions! 

▶ Management 
 access rights, visibility, groups/teams, … 

GitHub & GitLab features 











▶ GitHub.com (& GitLab.com) 

- useful for international projects & collaboration 
- ensures international visibility 
- can be more than just code (workshop, home page, CV,…) 

▶ GitLab.uliege.be 
- hosted at Uliège by SeGI → safe & secure 
- easy local collaboration 
- lab knowledge with issues & wiki 
- still international visibility 

Key difference is audience and membership management. 

GitHub.com vs GitLab.uliege.be 



▶ Why “Version Control” ? 

▶ Basics of Version Control (VC) 

▶ Git as a VC solution 

▶ Being Git practical with GitHub/GitLab 

▶ Conclusions & reference 

Program 



▶ “It’s only a small bit of code to try out an idea on my data…” 

 This how breakthroughs happen and papers follow! 

▶ “Nobody else will ever be interested in this…” 

 If you are, someone else will necessarily be! 

▶ “My code is not ready yet…” 

 The ULTIMATE reason to actually version your code! 

Major hurdle is psychological or carelessness. 

Any good “reasons” not to VC ? 



 

"Writing software as if we are the only person that ever 
has to comprehend it is one of the biggest mistakes and 

false assumptions that can be made."  

- Karolina Szczur 

Some wisdom 



▶ Absolutely necessary to manage any project 
that relies on code, script, batch, text,… 

▶ Useful to keep track of changes, improvements & 
bug fixes over time 

▶ Even more so with multiple developers/users 

 start alone  team interest  available to the community 

▶ Open science  paper + code + data accessible 

 

Code Versioning conclusion 



▶ J. D. Blischak  et al., A Quick Introduction to Version Control with Git and GitHub, PLOS 
Computational Biology, 12(1): e1004668, 2016 
http://dx.doi.org/10.1371/journal.pcbi.1004668  

▶ https://en.wikipedia.org/wiki/Version_control 

▶ https://en.wikipedia.org/wiki/Git  

▶ https://git-scm.com/docs 

▶ https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf  

▶ http://github.com/ & http://gitlab.com  

▶ https://gitlab.uliege.be/  

▶ Git GUI: https://desktop.github.com/ & https://gitahead.github.io/gitahead.com/ 

▶ https://www.campus.uliege.be/cms/c_9096862/fr/services-internet-intranet-offerts  

 

 

 

 

References 

http://dx.doi.org/10.1371/journal.pcbi.1004668
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control
http://github.com/
http://github.com/
http://github.com/
http://github.com/
http://github.com/
http://github.com/
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
http://github.com/
http://github.com/
http://github.com/
http://gitlab.com/
http://gitlab.com/
http://gitlab.com/
https://gitlab.uliege.be/
https://gitlab.uliege.be/
https://gitlab.uliege.be/
https://desktop.github.com/
https://desktop.github.com/
https://desktop.github.com/
https://gitahead.github.io/gitahead.com/
https://gitahead.github.io/gitahead.com/
https://www.campus.uliege.be/cms/c_9096862/fr/services-internet-intranet-offerts
https://www.campus.uliege.be/cms/c_9096862/fr/services-internet-intranet-offerts
https://www.campus.uliege.be/cms/c_9096862/fr/services-internet-intranet-offerts
https://www.campus.uliege.be/cms/c_9096862/fr/services-internet-intranet-offerts
https://www.campus.uliege.be/cms/c_9096862/fr/services-internet-intranet-offerts
https://www.campus.uliege.be/cms/c_9096862/fr/services-internet-intranet-offerts
https://www.campus.uliege.be/cms/c_9096862/fr/services-internet-intranet-offerts
https://www.campus.uliege.be/cms/c_9096862/fr/services-internet-intranet-offerts
https://www.campus.uliege.be/cms/c_9096862/fr/services-internet-intranet-offerts


 

"Programming is like pinball.  
The reward for doing it is  

the opportunity of doing it again."  

– Unknown 

 
 

Finally 



Thank you for your attention! 





 


