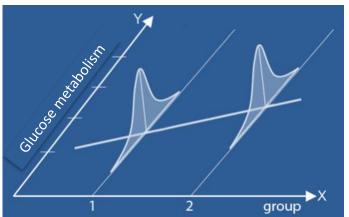
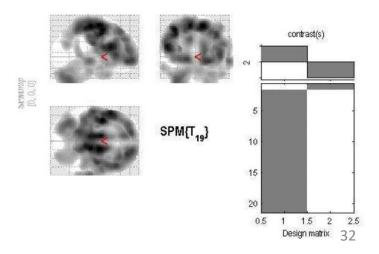


SPM Maps of Relative Hypometabolism and Relatively Preserved Brain Regions

CSG PET workshop

Arianna Sala, PhD Coma Science Group GIGA-Consciousness University Hospital & University of Liège

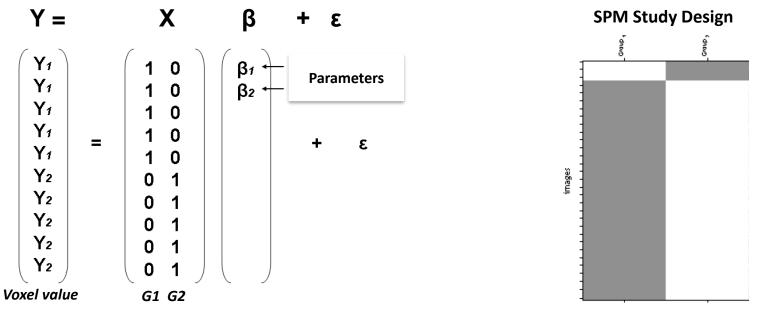

Voxel-level PET image analysis



- 1) Spatial Registration, Normalization (or Warping) and Smoothing -> to put all the different images in the same "space", crucial for statistical comparisons
- 2) Creation of a Parametric Image (SUVRs, DVRs, BP...) -> to put all the different images in the same «scale»
- Statistical Model -> to statistically compare images

Outline

- Compare our patient to a reference group of healthy controls (two-sample ttest)
- Voxel wise (mass-univariate: independent statistical tests for every single voxel)
- Obtain a statistical parametric map, showing areas where there is a significant difference between patient and healthy controls (decreased or increased metabolism)



Design Specification: two sample t-test

- Employs GLM, providing the residuals are normally distributed, GLM: $Y = X\beta + \epsilon$
- In the case of a two-sample t-test:

Comparison with healthy controls

https://search.kg.ebrain

s.eu/instances/Dataset/

68a61eab-7ba9-47cf-

be78-b9addd64bb2f

DATASET

F

	×
https://object.cs	cs.ch/v1/AUTH_25b4e28a742d4987a7b6f84c0c36512e/hbp-d000052_FDG-PET-
in-H0	C-and-DoC/EBRAINS-DataDescriptor_FDG-PET-in-HC-and-DoC.pdf

Custodians: 1 Laureys, Steven

This dataset contains the cerebral 18F-Fluorodeoxyglucose PET-CT scans of 33 healthy volunteers and 2 patients with disorder of consciousness. The data of the healthy volunteers has been normalized to MNI space and smoothed, and can be used as control group for assessing regions with relative preserved or reduced glucose uptake in patients with disorders of consciousness after severe brain injury. The toolbox to do the analysis, based on SPM, is shared as well. Two datasets also contain the raw DICOM images of 2 patients with severe brain injury as example. For the interpretation of the glucose uptake maps and standardized uptake values we refer the user to the EBRAINS Collab

Annen, J. and Sala, A. contributed equally Gosseries, O. and Thibaut, A. contributed equa

Modality:

radiology

multimodal approach

DG-PET/CT c	data of healthy	volunteers and	patients with	disorders of	f consciousness

Annen, J.; Sala, A.; Bonin, E.A.C.; Sanz, L.R.D.; Barra, A.; Cecconi, B.; Vitello, M.; Szymkowicz, E.; Cardone, P.; Bernard, C.; Martial, C.; Laureys, S.; Gosseries, O.; Thibaut, A.

Preparation: In vivo

Methods:

Positron emission

tomography/computed tomography (PET/CT)

Ê \sim

Keywords:

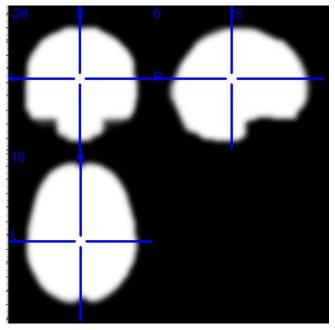
glucose uptake

Scanner

Gemini TF PET-CT scanner (Philips Medical Systems)

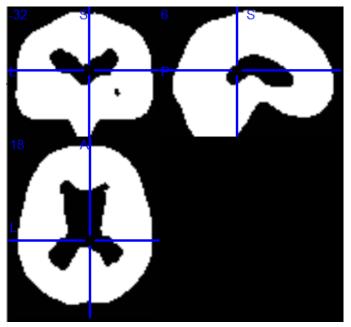
Files (247) Related publications (4) 1 Subjects (2) 🚯 Weight Name Species Sex Age category Strain Genotype Samples Age · anatomical approach DoC(n = 2)Homo sapiens Female Adult Male healthy (n = 33)Homo sapiens Female 19 - 70 years Adult Male

Comparison with healthy controls



Dataset	Subjects, N	Population	Age Range (y)	Tracer	Data Access
ADNI	1958	HC, SMC, MCI, ADD	55-98	FDG, Florbetapir, Florbetaben, Flortaucipir	Simple application
ADNI-ARG	56	HC, MCI, ADD		FDG, PiB	Simple application
		HC, PD, obesity, schizophrenia,		FDG, H2O, PiB, Flutemetamol, DOPA, NNC112, Reclopride,	Detailed application (incl. approval
AIVO	4339	depression, other	18-90	FLB457, CFT, WAY-100635, MADAM, Carfentanil, PK11195, PBR28	through ethical committe)
ALFA+ Study	361	HC, SCC - enriched for AD risk factors	45-65	Flutemetamol	Detailed application
Alzheimer's Disease Repository without		HC, SSC, MCI, ADD FTLD, PD, major			
Borders (ARWIBO)	60	depression	48-85	FDG	Detailed application
APOE E4 Arizona Dose Programme	447	HC - enriched for AD risk factors	20 - 87	FDG, PIB, Florbetapir, Flortaucipir,	Detailed application
Associazione Italiana Medicina Nucleare					
(AIMN)		НС	22-84	FDG	Simple application
		Asymptomatic middle-aged			
Centro Nacional de Investigaciones		participants with evidence of			
Cardiovasculares (CNIC)	547	subclinical atherosclerosis	41-58	FDG	Detailed application
DIAN (observational study)	556	HC, MCI, ADD (autosomal dominant)	18-69	FDG, PiB	Detailed application
DIAN-TU	249	HC, MCI, ADD (autosomal dominant)	21-72	FDG, PIB, Florbetapir, Flortaucipir	Detailed application
					Other (available to all EADC centers
European Alzheimer's Disease Consortium		HC, SCC, MCI, pseudo-dementia,			contributing a minimum dataset of
(EADC)	1114	ADD, FTLD	41-91	FDG, Florbetapir, Florbetaben, Flutemetamol	relevant data)
Harvard Aging Brain Study (HABS)	290	нс	62-90	FDG, PiB, Flortaucipir	Detailed application
Hôpitaux Universitaires de Genève (HUG)	603	HC, SCD, MCI, Dementia	28-92	FDG, florbetapir, flutemetamol, flortaucipir	Detailed application
International Consortium for Brain					
Mapping (ICBM)	28	HC, MCI, ADD	29-92	FDG	Detailed application
J-ADNI	344	HC, MCI, ADD	60-85	FDG, PiB, BF227	Detailed application
KBASE	643	HC, MCI, ADD	25-90	FDG, PiB, Flortaucipir	Detailed application
Knight ADRC	1142	HC, MCI, ADD	34-100	FDG, PIB, Florbetapir, Flortaucipir	Detailed application
Mayo Clinical Study of Aging		HC, MCI, dementia	30-90+	FDG, PiB, Flortaucipir	Detailed Application
Monash rsPET-MR		нс	18-21		Freely available
Monash vis-fPET-fMRI	10	нс	18-48	FDG	Freely available
OASIS-3	777	HC, SCC, MCI, ADD	42-95	FDG, PiB, Florbetapir	Simple application
The Incidence of Cognitive Impairment in					
Cohorts with Longitudinal Evaluation-PD					
(ICICLE-PD)	99	HC, PD, PD-MCI	54-91		Detailed application
University Medical Centre - Ljubljana	159	HC, SCC, MCI, ADD	49-89	FDG, Florbetaben	Other (bilateral agreement)
					Cala at al in anomanation

Sala et al., in preparation

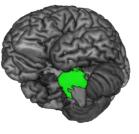

Masking

Explicit Mask

 Brain mask is provided by the experimenter (default brain mask provided in SPM fieldmap toolbox used in our case)

Relative Mask

- Creates mask based on intensity values of the image
- Usual threshold set to 0.8 (exclude the voxels with intensity >80% of the mean global value, computed after excluding image voxels < mean global value/8)


A reference region should be:

- Spared by the disease of interest
- Devoid of tracer specific uptake
- => The delivery of the tracer in this region is similar across patients and healthy controls

Somatosensory Cortex

Whole Cerebellum (or only CER GM)

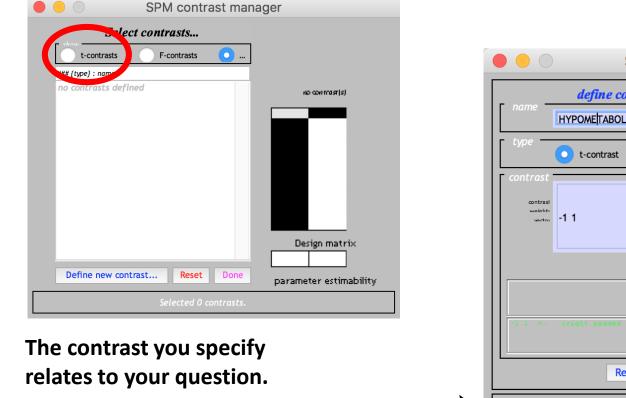
PONS

This allows us the compute a standardized uptake value ratio (comparable across subjects) that can be used for further analysis

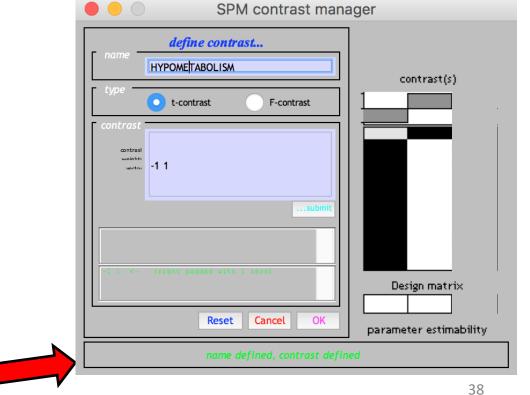
Courtesy of Leonardo Iaccarino, PhD, UCSF

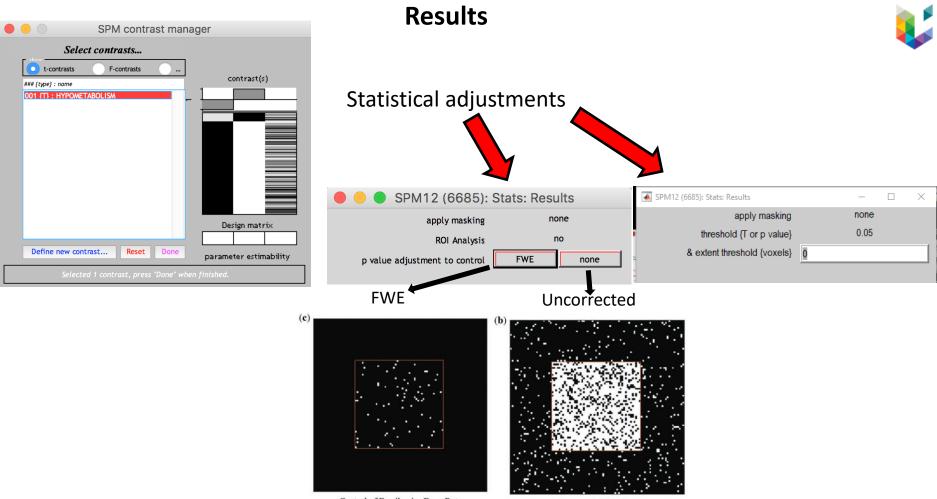
SPM standard approach considers a "Global Mean", which computes an average value from all the GM cortical regions.

Scaling


Each image (patient and controls) is scaled to <u>its</u> global mean; this provides a relative, NOT absolute measure of metabolism!

When comparing patient and controls we then obtain a *relative* measure of decreases and increases

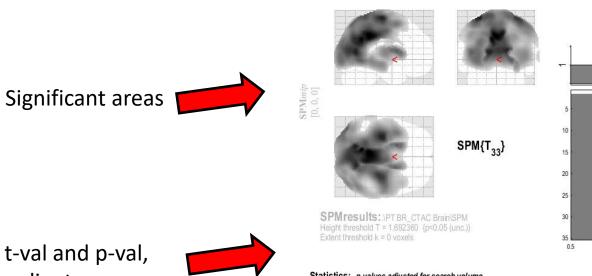



Contrasts

Contrast

Control of Familywise Error Rate

Uncorrected Results


Courtesy of Leonardo Iaccarino, PhD, UCSF

39 Bennet et al 2009

SPM maps

Нуро

Details, t-val and p-val, peak coordinates

Statistics: p-values adjusted for search volume

set-lev	-level clus			uster-level			peak-level					nm mm	
р	C	P _{FWE-corr}	9 _{FDR-corr}	k _E	p _{uncarr}	P _{FWE-corr}	9 _{FDR-corr}	T	(Z ₌)	P _{uncarr}			
1.000	4	0.000		62299	0.000	0.000	0.000	11.59	7.27	0.000	-4	-42	
						0.000	0.000	11.03	7.09	0.000	-10	-54	
						0.000	0.000	10.64	6.96	0.000	8	-46	
		1.000		124	0.778	1.000	0.048	2.34	2.24	0.013	72	-32	
		1.000		1	0.990	1.000	0.156	1.71	1.67	0.047	54	30	
		1.000		2	0.984	1.000	0.157	1.71	1.67	0.047	-28	-14	

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 1.69, p = 0.049 (1.000) Extent threshold: k = 0 voxels Expected voxels per cluster, <k> = 1307.636 Expected number of clusters, <c> = 18.33 FWEp: 5.042, FDRp: 2.325, FWEc: 62299

Degrees of freedom = [1.0, 33.0] FWHM = 22.1 24.2 21.4 mm mm mm; 11.1 12.1 10.7 {voxels} Volume: 1610344 = 201293 voxels = 127.9 resels Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 1435.20 voxels)

contrast

1.5 2

1 Design matrix 2.5