Introduction à la statistique médicale

Statistical Parametric Mapping short course

Course 4:

Multiple comparison problem & levels of inference

Christophe Phillips, Ir PhD GIGA – CRC *In Vivo* Imaging & GIGA – *In Silico* Medicine

Content

- Introduction
- Family-wise error rate (FWER)
- Levels of inference in SPM
- Non-parametric permutation test
- Conclusion

Content

- Introduction
 - Single voxel inference
 - Multiple comparison problem
- Family-wise error rate (FWER)
- Levels of inference in SPM
- Non-parametric permutation test
- Conclusion

Single voxel inference

Classical hypothesis testing...

- Null hypothesis *H*
 - test statistic
 - null distributions
- Hypothesis test
 - control Type I error
 - incorrectly reject H
 - test *level* α
 - Pr("reject" $H \mid H$) $\leq \alpha$
- *p* -value
 - min α at which *H* rejected
 - $\Pr(T \ge t \mid H)$
 - characterising "surprise"

t -distribution, 32 df.

Sensitivity & specificity

	ACTION							
		Don't reject	Reject					
TRUTH	H _o true	True Negative	False Positive					
	H_0 false	False Negative	True Positive					

Sensitivity = TP/(TP+FN) = β Specificity = TN/(TN+FP) = 1 - α FP = Type I error or 'error' FN = Type II error α = p-value/FP rate/error rate/significance level β = power

Multiple tests

Multiple tests

If we have 100000 voxels, $\alpha = 0.05 \Rightarrow$ **5000 false positive voxels**.

This is clearly undesirable! Need to define a *null hypothesis* for a *collection of tests*.

Noisy data

Use of `uncorrected' *p*-value, $\alpha = 0.1$

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% Percentage of Null Pixels that are False Positives Assessing statistics images

Where's the signal?

High Threshold

Good Specificity

Poor Power (risk of false negatives)

Med. Threshold

Low Threshold

Poor Specificity (risk of false positives)

Good Power

Content

- Introduction
- Family-wise error rate (FWER)
 - Family-wise Null hypothesis
 - Bonferroni correction
 - Random Field Theory
- Levels of inference in SPM
- Non-parametric permutation test
- Conclusion

Family-Wise Null Hypothesis

Family-Wise Null Hypothesis: Activation is zero everywhere

If we reject a voxel null hypothesis at *any* voxel, we reject the family-wise Null hypothesis

A FP anywhere in the image gives a Family Wise Error (FWE)

Family-Wise Error rate (FWER) = `corrected' p-value

The Family-Wise Error rate (FWER), α_{FWE} , for a family of *N* tests follows the inequality:

$$\alpha_{FWE} \le N\alpha$$

where α is the test-wise error rate.

Therefore, to ensure a particular FWER choose:

$$\alpha = \frac{\alpha_{FWE}}{N}$$

This correction does not require the tests to be independent but becomes very stringent if dependence.

Bonferroni correction, example

- Experiment with N = 100000 independent voxels and 40 d.f.
 - v = unknown corrected probability threshold,
 - find v such that family-wise error rate $\alpha = 0.05$
- Bonferroni correction:
 - probability that all tests are below the threshold,
 - use v = α / N
 - here v=0.05/100000=0.0000005

 \Rightarrow threshold *t* = 5.77

• Interpretation:

Bonferroni procedure gives a corrected p-value,

i.e. for a t statistics = 5.77,

- uncorrectd p value = 0.0000005
- corrected p value = 0.05

Bonferroni & independent observations

100 by 100 voxels. **10000** independent measures Fix the $P^{FWE} = 0.05$, *z* threshold ?

Bonferroni: v = 0.05 / 10000 = 0.000005 \Rightarrow threshold z = 4.42

100 by 100 voxels. **100** independent measures Fix the $P^{FWE} = 0.05$, *z* threshold ?

Bonferroni: v = 0.05 / 100 = 0.0005 \Rightarrow threshold z = 3.29

 $v = \alpha / n_i$ where n_i is the number of independent observations.

Bonferroni & independent observations

100 by 100 voxels. **10000** independent measures Fix the $P^{FWE} = 0.05$, *z* threshold ?

Bonferroni:

v = 0.05 / 10000 = 0.000005 \Rightarrow threshold z = 4.42 Hinge 1 - smoothed with Causaian kannel of PMHM 15 by 15 points

100 by 100 voxels. How many independent measures ???

Random Field Theory

 \Rightarrow Consider a statistic image as a discretisation of a continuous underlying random field.

 \Rightarrow Use results from continuous **random field theory**.

RFT and Euler Characteristic

Euler Characteristic χ_u :

- Topological measure $\chi_u = \#$ blobs # holes
- at high threshold *u*:
 χ_u = # blobs

$$FWER = p(FWE) \\ \approx E[\chi_u]$$

Euler characteristic...

Expected Euler Characteristic

2D Gaussian Random Field

Smoothness

Smoothness parameterised in terms of FWHM:

Size of Gaussian kernel required to smooth i.i.d. noise to have same smoothness as observed null (standardized) data.

RESELS (Resolution Elements):

 $1 \text{ RESEL} = FWHM_xFWHM_yFWHM_z$

RESEL Count R = volume of search region in units of smoothness

The number of resels is similar, but not identical to the number independent observations.

Smoothness estimated from spatial derivatives of standardised residuals:

Yields an RPV image containing local roughness estimation.

Eg: 10 voxels, 2.5 FWHM, 4 RESELS

Corrected *p*-value for statistic value *t*

$$p_{c} = p(\max T > t)$$

$$\approx E[\chi_{t}]$$

$$\propto \lambda(\Omega) |\Lambda|^{1/2} t \exp(-t^{2}/2)$$

• Statistic value *t* increases ?

 $-p_c$ decreases (better signal)

• Search volume increases ($\lambda(\Omega) \uparrow$) ?

 $-p_c$ increases (more severe correction)

• Smoothness increases ($|\Lambda|^{1/2}\downarrow$) ?

 $-p_c$ decreases (less severe correction)

General form for expected Euler characteristic

t, *F* & χ^2 fields • restricted search regions • *D* dimensions •

$$E[\chi_u(\Omega)] = \sum_{d=0}^D R_d(\Omega)\rho_d(u)$$

 $R_d(Ω)$: *d*-dimensional Lipschitz-Killing curvatures of Ω (≈ *intrinsic volumes*):

-function of dimension, space Ω and smoothness:

 $\begin{aligned} R_0(\Omega) &= \chi(\Omega) \text{ Euler characteristic of } \Omega \\ R_1(\Omega) &= \text{resel diameter} \\ R_2(\Omega) &= \text{resel surface area} \\ R_3(\Omega) &= \text{resel volume} \end{aligned}$

 $\rho_d(\mathbf{u})$: *d*-dimensional EC density of the field

- function of dimension and threshold, specific for RF type:

E.g. Gaussian RF:

$$\rho_0(u) = 1 - \Phi(u)$$

$$\rho_1(u) = (4 \ln 2)^{1/2} \exp(-u^2/2) / (2\pi)$$

$$\rho_2(u) = (4 \ln 2) \quad u \quad \exp(-u^2/2) / (2\pi)^{3/2}$$

$$\rho_3(u) = (4 \ln 2)^{3/2} (u^2 - 1) \quad \exp(-u^2/2) / (2\pi)^2$$

$$\rho_4(u) = (4 \ln 2)^2 \quad (u^3 - 3u) \quad \exp(-u^2/2) / (2\pi)^{5/2}$$

Estimated component fields

estimate

Smoothness, PRF, resels...

- Smoothness $\sqrt{|\Lambda|}$
 - variance-covariance matrix of partial derivatives (possibly location dependent)

$$\Lambda = \begin{pmatrix} \operatorname{var}\begin{bmatrix} \frac{\partial e}{\partial x} \end{bmatrix} & \operatorname{cov}\begin{bmatrix} \frac{\partial e}{\partial x} , \frac{\partial e}{\partial y} \end{bmatrix} & \operatorname{cov}\begin{bmatrix} \frac{\partial e}{\partial x} , \frac{\partial e}{\partial z} \end{bmatrix} \\ \operatorname{cov}\begin{bmatrix} \frac{\partial e}{\partial x} , \frac{\partial e}{\partial y} \end{bmatrix} & \operatorname{var}\begin{bmatrix} \frac{\partial e}{\partial y} \end{bmatrix} & \operatorname{cov}\begin{bmatrix} \frac{\partial e}{\partial y} , \frac{\partial e}{\partial z} \end{bmatrix} \\ \operatorname{cov}\begin{bmatrix} \frac{\partial e}{\partial x} , \frac{\partial e}{\partial z} \end{bmatrix} & \operatorname{cov}\begin{bmatrix} \frac{\partial e}{\partial y} , \frac{\partial e}{\partial z} \end{bmatrix} & \operatorname{var}\begin{bmatrix} \frac{\partial e}{\partial z} \end{bmatrix} \end{pmatrix}$$

Point Response Function PRF

• Full Width at Half Maximum FWHM. Approximate the peak of the Covariance function with a Gaussian

- Gaussian PRF
 - Σ kernel var/cov matrix

- ACF
$$2\Sigma$$

- $\Lambda = (2\Sigma)^{-1}$
 \Rightarrow FWHM f = $\sigma \sqrt{8ln(2)}$
- $\Sigma = \begin{bmatrix} f_x & 0 & 0 \\ 0 & f_y & 0 \\ 0 & 0 & f_z \end{bmatrix} \begin{bmatrix} 1 \\ 8ln(2) \\ ignoring \ covariances \\ \Rightarrow \sqrt{|\Lambda|} = (4ln(2))^{3/2} / (f_x \times f_y \times f_z)$

• Resolution Element (RESEL) – Resel dimensions $(f_x \times f_y \times f_z)$ – $R_3(\Omega) = \lambda(\Omega) / (f_x \times f_y \times f_z)$ *if strictly stationary*

$$\begin{split} \mathsf{E}[\chi(A_{\mu})] &= \mathsf{R}_{3}(\Omega) \; (4\ln(2))^{3/2} \; (u^{2} - 1) \; \exp(-u^{2}/2) \\ &\approx \mathsf{R}_{3}(\Omega) \; (1 - \Phi(u)) \\ & \text{for high thresholds } u \end{split}$$

RFT assumptions

- The statistic image is assumed to be a good lattice representation of an underlying random field with a multivariate Gaussian distribution.
- These fields are continuous, with an autocorrelation function twice differentiable at the origin.
- The threshold chosen to define clusters is high enough such that the expected EC is a good approximation to the number of clusters.
- The lattice approximation is reasonable, which implies the smoothness is relatively large compared to the voxel size.
- The errors of the specified statistical model are normally distributed, which implies the model is not misspecified.
- Smoothness of the data is unknown and estimated: very precise estimate by pooling over voxels ⇒ stationarity assumption.

Content

- Introduction
- Family-wise error rate (FWER)
- Levels of inference in SPM
 - Topological inference
 - Small volume correction
- Non-parametric permutation test
- Conclusion

Topological inference

Topological inference

You MUST use a sufficiently high clusterforming threshold u_{clus} , i.e. $p_{unc} < .001$

Topological inference

Peak, cluster & set level inference

Levels of inference...

Small volume correction

If one has some *a priori* idea of where an activation should be, one can pre-specify a small search space and make the appropriate correction instead of having to control for the entire search space

- mask defined by (probabilistic) anatomical atlases
- mask defined by separate "functional localisers"
- mask defined by orthogonal contrasts
- search volume around previously reported coordinates

With no prior hypothesis: 1. Test whole volume.

- 2. Identify SPM peak.
- 3. Then make a test assuming a single voxel.

SVC = correction for multiple comparison in a user's defined volume 'of interest'.

Shape and size of volume become important for small or oddly shaped volume !

Example of SVC (900 voxels)

- compact volume: samples from maximum 16 resels
- spread volume: sample from up to 36 resels
 - ⇒ threshold higher for spread volume than compact volume.

Small volume correction, topology

TABLE 3. Representative examples of resel counts and critical values.										
	Vol.		Resel counts			$t \text{ for } \mathbf{P}(M \ge t) =$				
Search region V	(cc)	$R_0(V)$	$R_1(V)$	$R_2(V)$	$R_3(V)$	0.10	0.05	0.01		
Single voxel	0	1	0	0	0	1.28	1.64	2.33		
Head Of Caudate	7	0	6.18	4.63	0.65	2.75	3.02	3.55		
Putamen	12	1	7.32	6.80	1.18	2.89	3.15	3.66		
Globus Pallidus	3	0	4.03	2.29	0.24	2.49	2.78	3.35		
Thalamus	11	1	4.94	5.14	1.13	2.79	3.05	3.59		
Anterior Cingulate Gyrus	9	1	8.20	5.79	0.86	2.86	3.11	3.63		
Posterior Cingulate Gyrus	6	1	5.32	3.85	0.58	2.70	2.97	3.51		
Cingulate Gyri	15	0	12.89	9.63	1.44	3.03	3.27	3.77		
Superior Frontal Gyrus	80	1	15.64	25.69	8.97	3.38	3.60	4.07		
Middle Frontal Gyrus	57	1	14.89	21.14	6.23	3.31	3.53	4.00		
Inferior Frontal Gyrus	37	1	11.22	14.25	4.06	3.17	3.41	3.89		
Precentral Gyrus	32	1	12.30	14.23	3.40	3.16	3.40	3.88		
Frontal Gyri	207	1	19.30	53.39	23.63	3.63	3.84	4.28		
Occipital Lobe	65	-1	10.68	23.11	7.17	3.32	3.55	4.02		
4mm shell	254	2	0.54	207.27	15.88	3.85	4.04	4.45		
Whole brain	1294	1	20.43	107.09	153.42	4.05	4.23	4.63		

FWHM=20mm
Content

- Introduction
- Family-wise error rate (FWER)
- Levels of inference in SPM
- Non-parametric permutation test
- Conclusion

Non-parametric permutation test

- Parametric methods
 - Assume distribution of statistic under null hypothesis

- Nonparametric methods
 - Use *data* to find distribution of statistic under null hypothesis
 - Any statistic!

• Data from V1 voxel in visual stim. experiment A: Active, flashing checkerboard B: Baseline, fixation 6 blocks, ABABAB Just consider block averages...

Α	В	Α	В	Α	В
103.00	90.48	99.93	87.83	99.76	96.06

- Null hypothesis *H*_o
 - No experimental effect, A & B labels arbitrary
- Statistic
 - Mean difference

- Under *H*_o
 - Consider all equivalent relabelings

AAABBB	ABABAB	BAAABB	BABBAA
AABABB	ABABBA	BAABAB	BBAAAB
AABBAB	ABBAAB	BAABBA	BBAABA
AABBBA	ABBABA	BABAAB	BBABAA
ABAABB	ABBBAA	BABABA	BBBAAA

- Under *H*_o
 - Consider all equivalent relabelings
 - Compute all possible statistic values

AAABBB	4.82	ABABAB	9.45	BAAABB	-1.48	BABBAA	-6.86
AABABB	-3.25	ABABBA	6.97	BAABAB	1.10	BBAAAB	3.15
AABBAB	-0.67	ABBAAB	1.38	BAABBA	-1.38	BBAABA	0.67
AABBBA	-3.15	ABBABA	-1.10	BABAAB	-6.97	BBABAA	3.25
ABAABB	6.86	ABBBAA	1.48	BABABA	-9.45	BBBAAA	-4.82

- Under H_o
 - Consider all equivalent relabelings
 - Compute all possible statistic values
 - Find 95%ile of permutation distribution

AAABBB	4.82	ABABAB	9.45	BAAABB	-1.48	BABBAA	-6.86
AABABB	-3.25	ABABBA	6.97	BAABAB	1.10	BBAAAB	3.15
AABBAB	-0.67	ABBAAB	1.38	BAABBA	-1.38	BBAABA	0.67
AABBBA	-3.15	ABBABA	-1.10	BABAAB	-6.97	BBABAA	3.25
ABAABB	6.86	ABBBAA	1.48	BABABA	-9.45	BBBAAA	-4.82

- Under *H*_o
 - Consider all equivalent relabelings
 - Compute all possible statistic values
 - Find 95%ile of permutation distribution

- Under *H*_o
 - Consider all equivalent relabelings
 - Compute all possible statistic values
 - Find 95%ile of permutation distribution

AAABBB	4.82	ABABAB	9.45	BAAABB	-1.48	BABBAA	-6.86
AABABB	-3.25	ABABBA	6.97	BAABAB	1.10	BBAAAB	3.15
AABBAB	-0.67	ABBAAB	1.38	BAABBA	-1.38	BBAABA	0.67
AABBBA	-3.15	ABBABA	-1.10	BABAAB	-6.97	BBABAA	3.25
ABAABB	6.86	ABBBAA	1.48	BABABA	-9.45	BBBAAA	-4.82

Controlling FWER: Permutation Test

- Parametric methods
 - Assume distribution of
 max statistic under null hypothesis

- Nonparametric methods
 - Use *data* to find
 distribution of *max* statistic
 under null hypothesis
 - Again, any max statistic!

Permutation Test & Exchangeability

- Exchangeability is fundamental
 - Def: Distribution of the data unperturbed by permutation
 - Under H₀, exchangeability justifies permuting data
 - Allows us to build permutation distribution
- Subjects are exchangeable
 - Under H_o , each subject's A/B labels can be flipped
- Are fMRI scans exchangeable under H_o?
 - If no signal, can we permute over time?

Permutation Test & Exchangeability

- fMRI scans are *not* exchangeable
 - Permuting disrupts order, temporal autocorrelation
- *Intra*subject fMRI permutation test
 - Must decorrelate data, model before permuting
 - What is correlation structure?
 - Usually must use parametric model of correlation
 - E.g. Use wavelets to decorrelate
 - Bullmore et al 2001, HBM 12:61-78
- *Inter*subject fMRI permutation test
 - Create difference image for each subject
 - For each permutation, flip sign of some subjects

• fMRI Study of Working Memory

- 12 subjects, block design Marshuetz et al (2000)
- Item Recognition
 - Active: View five letters, 2s pause, view probe letter, respond
 - Baseline: View XXXXX, 2s pause, view Y or N, respond
- Second Level RFX
 - Difference image, A-B constructed for each subject
 - One sample, smoothed variance t test

• Permute!

- $-2^{12} = 4,096$ ways to flip 12 A/B labels
- For each, note maximum of *t* image

Maximum Intensity Projection Thresholded *t*

 t_{11} Statistic, Nonparametric Threshold

Test Level vs. t_{11} Threshold

t₁₁ Statistic, RF & Bonf. Threshold

Compare with Bonferroni

 α = 0.05/110,776

 Compare with parametric RFT

 110,776
 2×2×2mm voxels
 5.1×5.8×6.9mm FWHM

smoothness 462.9 RESELs

Generalization: RFT vs Bonf. vs Perm.

		t Threshold			
		(0.05 Corrected)			
	df	RF	Bonf	Perm	
Verbal Fluency	4	4701.32	42.59	10.14	
Location Switching	9	11.17	9.07	5.83	
Task Switching	9	10.79	10.35	5.10	
Faces: Main Effect	11	10.43	9.07	7.92	
Faces: Interaction	11	10.70	9.07	8.26	
Item Recognition	11	9.87	9.80	7.67	
Visual Motion	11	11.07	8.92	8.40	
Emotional Pictures	12	8.48	8.41	7.15	
Pain: Warning	22	5.93	6.05	4.99	
Pain: Anticipation	22	5.87	6.05	5.05	

RFT vs Bonf. vs Perm.

		No. Significant Voxels						
			(0.05 Corrected)					
			t					
	df	RF	Bonf	Perm				
Verbal Fluency	4	0	0	0				
Location Switching	9	0	0	158				
Task Switching	9	4	6	2241				
Faces: Main Effect	11	127	371	917				
Faces: Interaction	11	0	0	0				
Item Recognition	11	5	5	58				
Visual Motion	11	626	1260	1480				
Emotional Pictures	12	0	0	0				
Pain: Warning	22	127	116	221				
Pain: Anticipation	22	74	55	182				

Content

- Introduction
- Family-wise error rate (FWER)
- Levels of inference in SPM
- Non-parametric permutation test
- Conclusion

What we'd like

- Don't threshold, model the signal!
 - Signal location?
 - Estimates and CI's on (x,y,z) location
 - Signal magnitude?
 - CI's on % change
 - Spatial extent?
 - Estimates and CI's on activation volume
 - Robust to choice of cluster definition
- ...but this requires an explicit spatial model

Real-life inference: What we get

- Signal location
 - Local maximum no inference
 - Center-of-mass no inference
 - Sensitive to blob-defining-threshold
- Signal magnitude
 - Local maximum intensity P-values (& CI's)
- Spatial extent
 - Cluster volume P-value, no CI's
 - Sensitive to blob-defining-threshold

Conclusion

- There is a **multiple testing problem** and corrections *must* be applied on p-values, possibly for the volume of interest only (see SVC).
- Inference is made about topological features (peak height, spatial extent, number of clusters).
 Use results from the Random Field Theory.
 Or permutation tests.
- **Control of FWER** (probability of a false positive anywhere in the image) for a space of any dimension and shape.

References

Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Comparing functional (PET) images: the assessment of significant change. Journal of Cerebral Blood Flow and Metabolism, 1991.

Worsley KJ, Evans AC, Marrett S, Neelin P. A three-dimensional statistical analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow and Metabolism. 1992.

Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC. A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 1996.

Chumbley J, Worsley KJ, Flandin G, and Friston KJ. Topological FDR for neuroimaging. NeuroImage, 2010.

Kilner J and Friston KJ. Topological inference for EEG and MEG data. Annals of Applied Statistics, 2010.

Flandin G and Friston KJ. Topological Inference. Brain Mapping: An Encyclopedic Reference, 2015.

Flandin G and Friston KJ. Analysis of family-wise error rates in statistical parametric mapping using random field theory. Human Brain Mapping, 2017.

FDR illustration:

Noise

Signal+Noise

Control of Per Comparison Rate at 10%

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5% Percentage of Null Pixels that are False Positives

Control of Familywise Error Rate at 10%

FWE

Occurrence of Familywise Error

Control of False Discovery Rate at 10%

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7% Percentage of Activated Pixels that are False Positives

Benjamini & Hochberg Procedure

- Select desired limit α on E(FDR)
- Order p-values, $p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(V)}$
- Let *r* be largest *i* such that

 $p_{(i)} \leq i/V^* \alpha$

 Reject all hypotheses corresponding to p₍₁₎, ..., p_(r).

Signal Intensity 3.0 Signal Extent 1.0 Noise Smoothness 3.0

Signal Intensity 3.0 Signal Extent 2.0 Noise Smoothness 3.0

Signal Intensity 3.0 Signal Extent 3.0 Noise Smoothness 3.0

$$p = 0.000252$$
 $z = 3.48$

Signal Intensity 3.0 Signal Extent 5.0 Noise Smoothness 3.0

Signal Intensity 3.0 Signal Extent 9.5 Noise Smoothness 3.0

$$p = 0.007157$$
 $z = 2.45$

Signal Intensity 3.0 Signal Extent16.5 Noise Smoothness 3.0

$$p = 0.019274$$
 $z = 2.07$

Signal Intensity 3.0 Signal Extent25.0 Noise Smoothness 3.0

Benjamini & Hochberg: Properties

• Adaptive

- Larger the signal, the lower the threshold
- Larger the signal, the more false positives
 - False positives constant as fraction of rejected tests
 - Not a problem with imaging's sparse signals
- Smoothness OK
 - Smoothing introduces positive correlations

Conclusions: FWER vs. FDR

You <u>MUST</u> account for multiplicity (Otherwise have a fishing expedition)

• FWER

- Very specific, not very sensitive

• FDR

Less specific, more sensitive
 (Sociological calibration still underway)

• And now a little demo!

