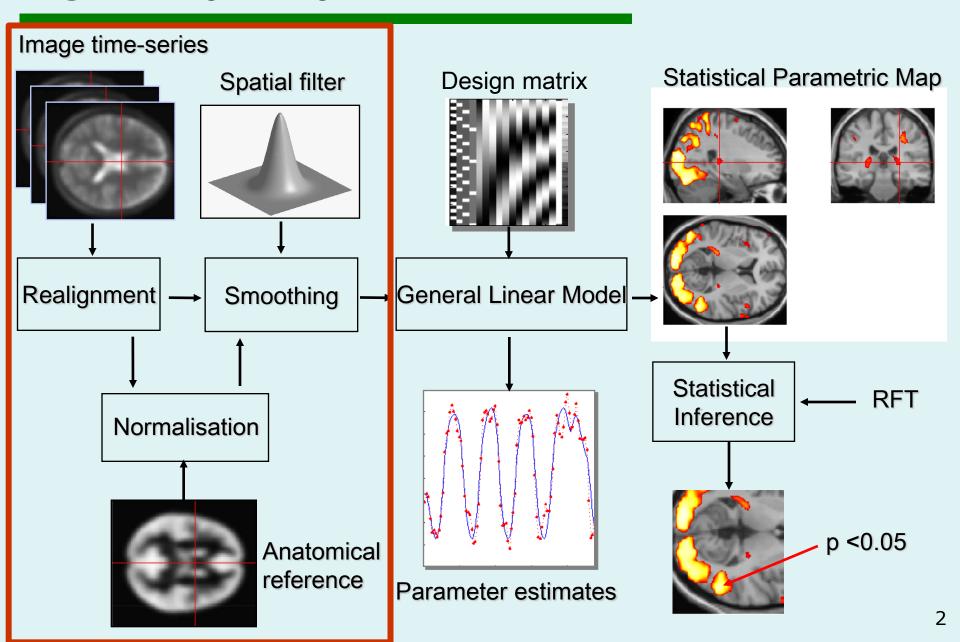
Introduction à la statistique médicale Statistical Parametric Mapping short course

<u>Course 1:</u> spatial pre-processing

SPM work flow



Content

Preliminaries

Within-subject

• Between-subject

Smoothing

Conclusion

Content

Preliminaries

- Introduction
- Rigid-body & affine transformation
- Function optimisation
- Transformations and interpolation
- Pre-processing overview
- Within-subject
- Between-subject
- Smoothing
- Conclusion

Image registration

Most "preprocessing" involves aligning images together.

Two components:

- Registration i.e. Optimise the parameters that describe spatial transformations between the images.
- Transformation i.e. Re-sample according to the determined transformation parameters.

Label based techniques

- Homologous labels (points, lines, surfaces) in the source and the reference images
 - → find transformations that best superpose them
- Labels are identified manually
 - time consuming and subjective process
 - → few identifiable discrete points in the brain
- Lines and surfaces, e.g. contours, can be extracted (semi-)automatically
- Best match = minimal distance...

Intensity based techniques

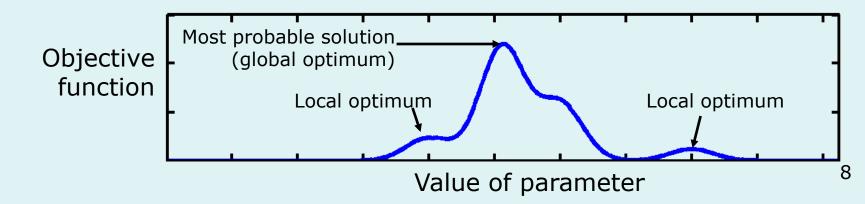
By minimizing a « **distance** » between the whole source image and the whole reference image:

- Need a scalar measure to optimize
- Susceptible to poor starting estimates

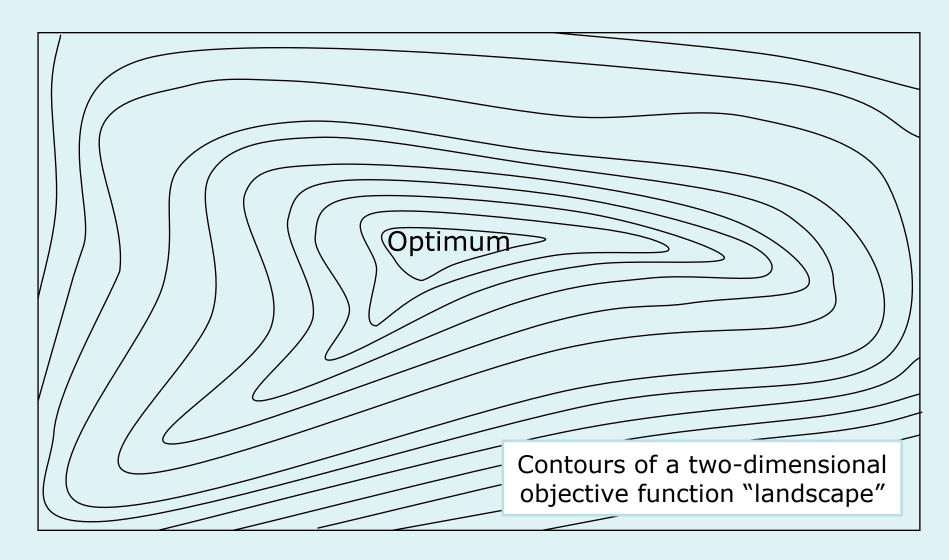
→ Hybrid approaches : label/manual + intensity based methods

Optimisation

- Image registration is done by optimisation.
- Optimisation involves finding some "best" parameters according to an "objective function", which is either minimised or maximised
- The "objective function" is often related to a probability based on some model



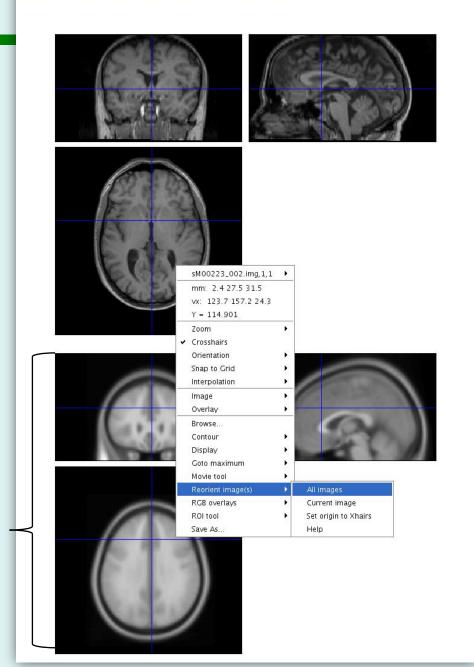
Optimisation, multiple parameters



Optimisation

Because registration only finds a *local* optimum, some manual reorienting of the images may be needed before doing anything else in SPM.

An MNI-space image from spm12/canonical directory.



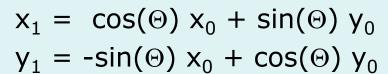
Rigid-body transformations

- Assume that brain of the same subject doesn't change shape or size in the scanner.
 - Head can move, but remains the same shape and size.
 - Some exceptions:
 - Image distortions.
 - Brain slops about slightly because of gravity.
 - Brain growth or atrophy over time.
- If the subject's head moves, we need to correct the images.
 - → Do this by image registration.

2D Affine Transforms

Translations by t_x and t_y

$$x_1 = x_0 + t_x$$
$$y_1 = y_0 + t_y$$



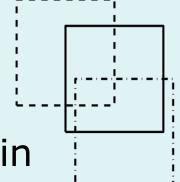
Zooms by s_x and s_y:

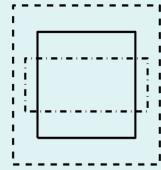
$$x_1 = s_x x_0$$

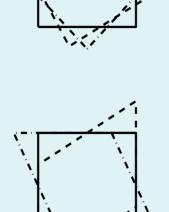
 $y_1 = s_y y_0$

Shear h_x

$$x_1 = x_0 + h_x y_0$$
$$y_1 = y_0$$





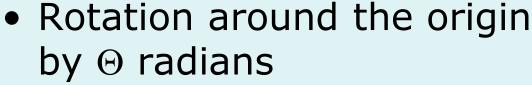


2D Affine Transforms

Translations by t_x and t_y

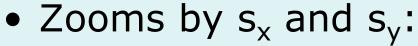
$$x_1 = 1 x_0 + 0 y_0 + t_x$$

 $y_1 = 0 x_0 + 1 y_0 + t_y$



$$x_1 = \cos(\Theta) x_0 + \sin(\Theta) y_0 + 0$$

$$y_1 = -\sin(\Theta) x_0 + \cos(\Theta) y_0 + 0$$



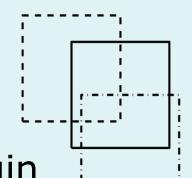
$$x_1 = s_x x_0 + 0 y_0 + 0$$

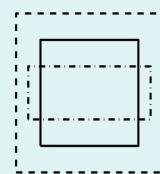
 $y_1 = 0 x_0 + s_y y_0 + 0$

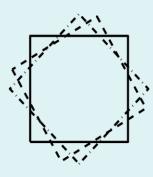
Shear h_x

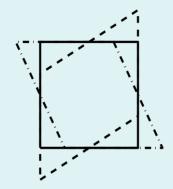
$$x_1 = 1 x_0 + 0 y_0 + h_x y_0$$

 $y_1 = 0 x_0 + 1 y_0 + 0$
Same for h_y









2D Affine transform

- Rigid-body transformations are a subset of "affine transformation"
- Parallel lines remain parallel
- Operations can be represented by:

$$x_1 = m_{11}x_0 + m_{12}y_0 + m_{13}$$

 $y_1 = m_{21}x_0 + m_{22}y_0 + m_{23}$

Or as matrices:

$$y = M x$$

$$\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x_0 \\ x_0 \\ 1 \end{bmatrix}$$

3D Affine transform

- Rigid-body transformations are a subset of "affine transformation"
- Parallel lines remain parallel
- Operations can be represented by:

$$x_1 = m_{11}x_0 + m_{12}y_0 + m_{13}z_0 + m_{14}$$

 $y_1 = m_{21}x_0 + m_{22}y_0 + m_{23}z_0 + m_{24}$
 $z_1 = m_{31}x_0 + m_{32}y_0 + m_{33}z_0 + m_{34}$

• Or as matrices:

3D Rigid-body Transform

- A 3D rigid body transform is an affine transform defined by:
 - 3 translations in X, Y & Z directions
 - -3 rotations about X, Y & Z axes

about x axis

The order of the operations matters

$$R = \begin{pmatrix} 1 & 0 & 0 & \mathsf{Xtrans} \\ 0 & 1 & 0 & \mathsf{Ytrans} \\ 0 & 0 & 1 & \mathsf{Ztrans} \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos f & \sin f & 0 \\ 0 & -\sin f & \cos f & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \cos q & 0 & \sin q & 0 \\ 0 & 1 & 0 & 0 \\ -\sin q & 0 & \cos q & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \cos \Omega & \sin \Omega & 0 & 0 \\ -\sin \Omega & \cos \Omega & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
Translations Pitch Roll Yaw

about y axis

about z axis

Voxel-to-world transformation

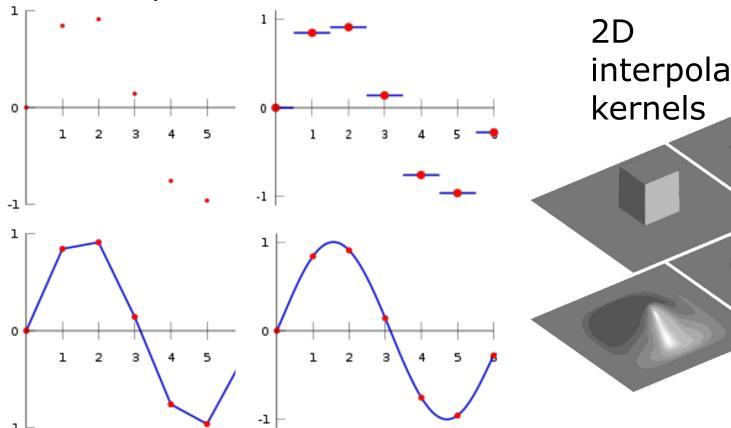
- "Voxel-to-world transforms" =

 Affine transform M associated with each image such that
- Maps from voxels ($\mathbf{x}=[1...N_x]$, $\mathbf{y}=[1...N_y]$, $\mathbf{z}=[1...N_z]$) to some world co-ordinate system. e.g.,
 - Scanner co-ordinates images from DICOM toolbox
 - T&T/MNI coordinates spatially normalised
- World coordinates are (usually) in millimetres!

Image resampling

A continuous function is represented by a linear combination of basis functions

1D interpolation



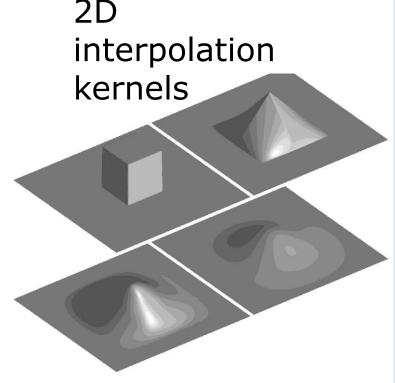


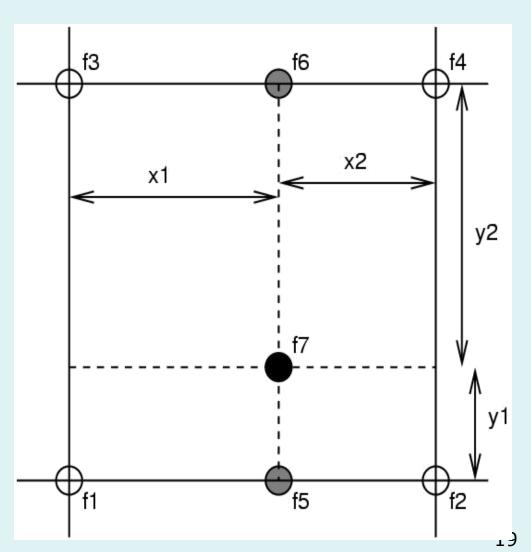
Image resampling

- Nearest neighbour
 - Take the value of the closest voxel
- Tri-linear
 - Just a weighted average of the neighbouring voxels

$$-f_5 = f_1 x_2 + f_2 x_1$$

$$-f_6 = f_3 x_2 + f_4 x_1$$

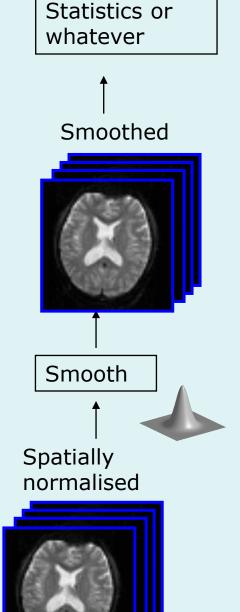
$$-f_7 = f_5 y_2 + f_6 y_1$$

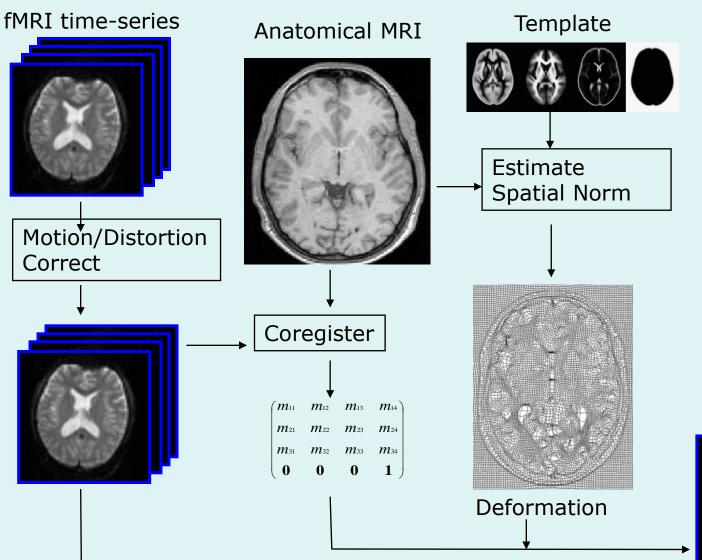


Various problems

Rigid **Image** body warping **Brain** Within Between subject subjects images Same Within contrast modality Different Between contrast modality

Pre-processing overview



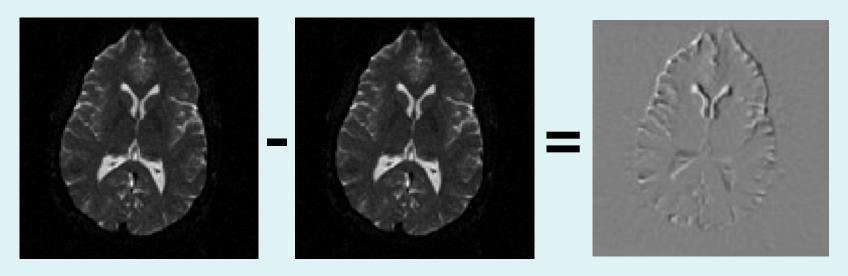


Content

Preliminaries

- Within-subject
 - Realignment
 - Minimising mean-squared difference / Residual artifacts
 - EPI Distortion correction
 - FieldMap Toolbox / Movement by distortion interaction
 - Coregistration
 - Maximising mutual information
- Between-subject
- Smoothing
- Conclusion

Mean-squared difference



 Minimising mean-squared difference works for intra-modal registration (realignment)

$$c(I,J) = \sum_{n=1}^{N} (I_n - J_n)^2$$

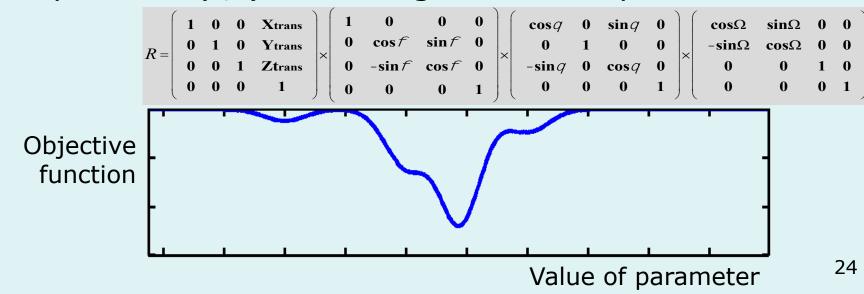
- Simple relationship between intensities in one image, versus those in the other
 - Assumes normally distributed differences

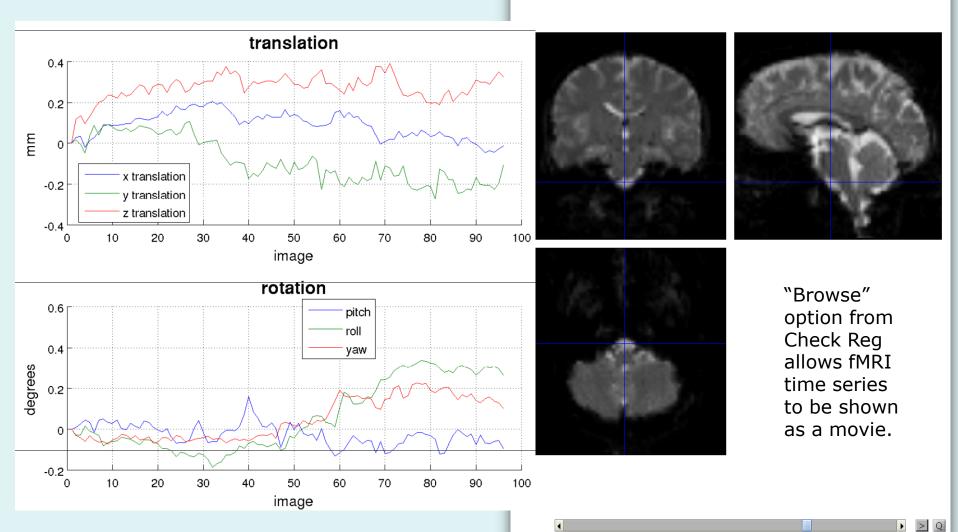
Within-subject registration

- Realign images I (fixed) and J (moving):
- Criteria to optimize:

$$\longrightarrow c(I,J) = \sum_{n=1}^{N} (I_n - J_n)^2$$

- c(I,J) depends on J's orientation, which depends on R's 6 parameters
 - Optimize c(I,J) according to those 6 parameters!



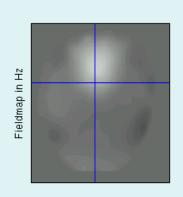


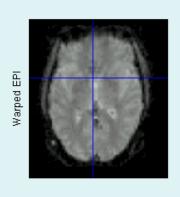
Residual errors from aligned fMRI

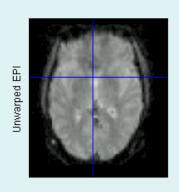
- Re-sampling can introduce interpolation errors
 - especially tri-linear interpolation
- Gaps between slices can cause aliasing artefacts
- Slices are not acquired simultaneously
 - rapid movements not accounted for by rigid body model
- Image artefacts may not move according to a rigid body model
 - image distortion, image dropout, Nyquist ghost
- BOLD signal changes influence the estimated motion.
- Functions of the estimated motion parameters can be modelled as confounds in subsequent analyses

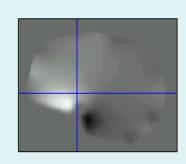
EPI distortion

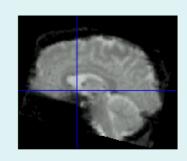
- Magnetic susceptibility differs among tissues.
- Greatest difference is between air and tissue.
- Subject disrupts B0 field, rendering it inhomogeneous
- Distortions in phase-encode direction

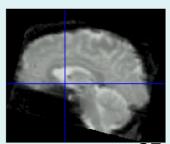








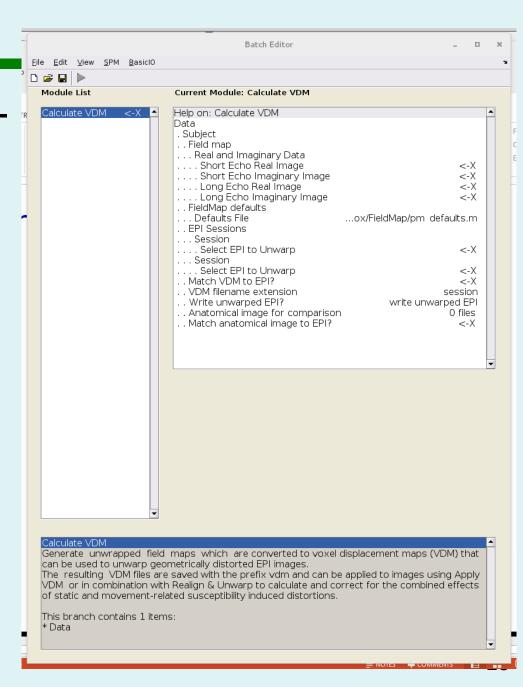




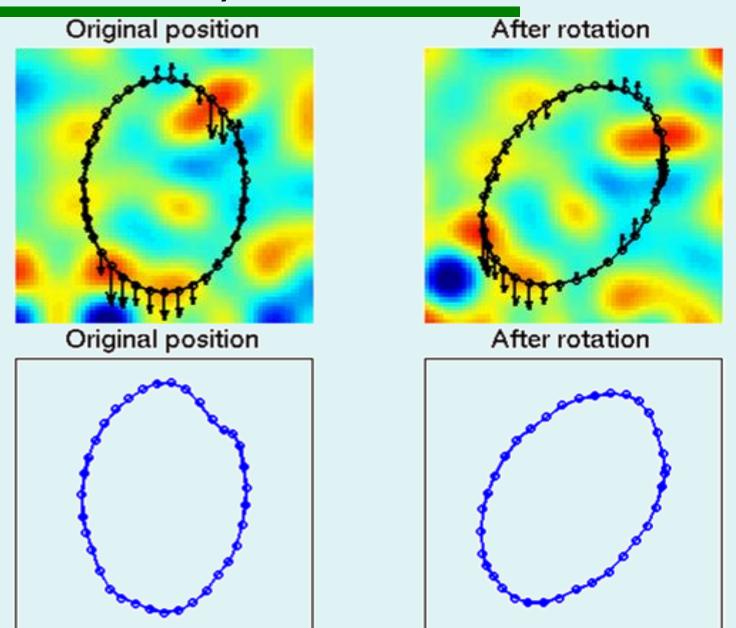
FieldMap toolbox

 Computes a voxeldisplacement map (VDM) from "fieldmap" scans.

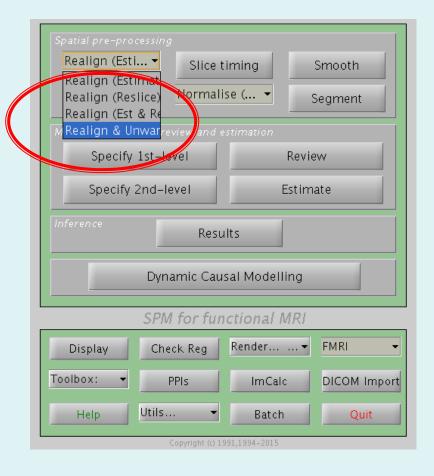
 Used to correct distortions in EPI.

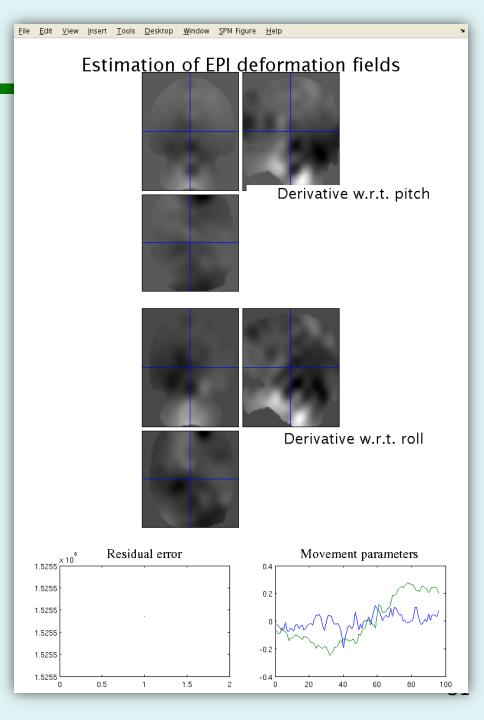


Movement-by-distortion interaction

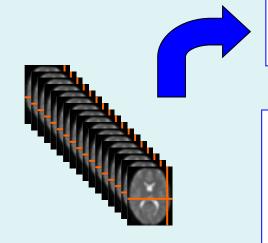


Realign & Unwarp

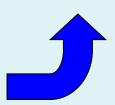




Correcting for distortion changes



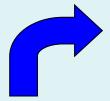
Estimate movement parameters.



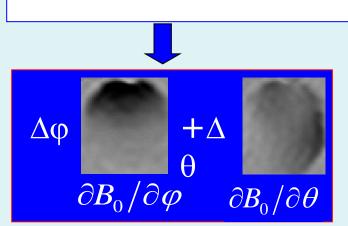
Estimate reference from mean of all scans.

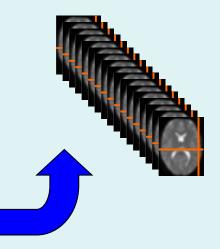
Estimate new distortion fields for each image:

 estimate rate of change of field with respect to the current estimate of movement parameters in pitch and roll.



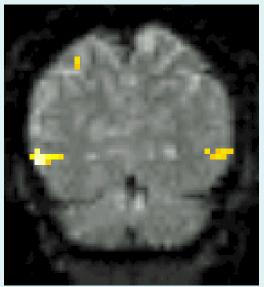
Unwarp time series.

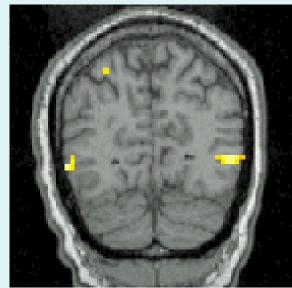




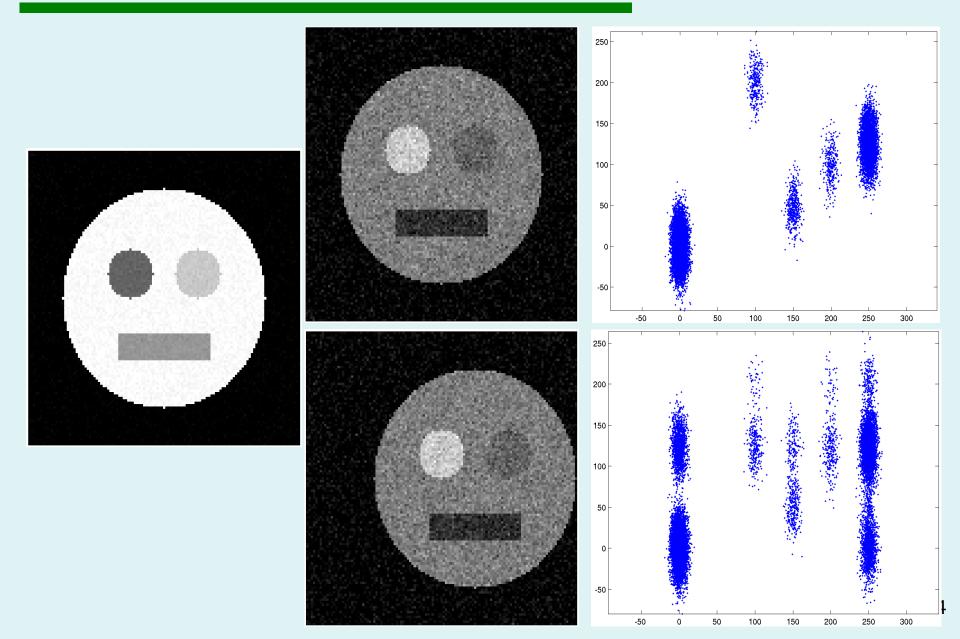
Coregistration

- Inter-modal registration.
- Match images from same subject but different modalities:
 - anatomical localisation of single subject activations
 - achieve more precise spatial normalisation of functional image using anatomical image.

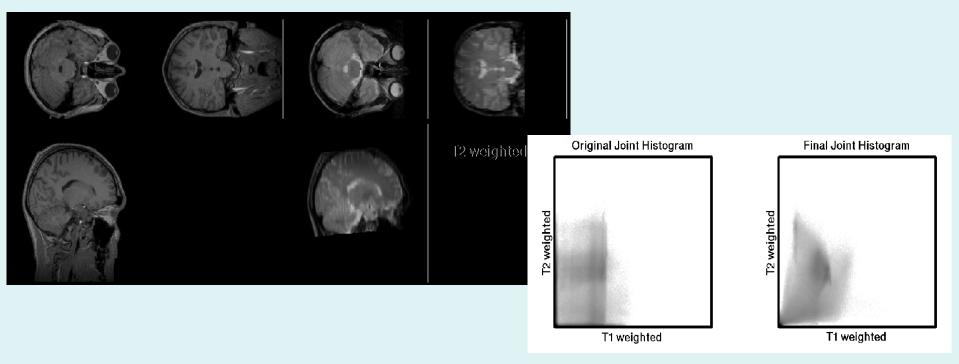




Mutual Information, example



Mutual Information, real case



- Used for between-modality registration
- Derived from joint histograms
- MI= $\int_{ab} P(a,b) \log_2 [P(a,b)/(P(a) P(b))]$ - Related to entropy: MI = -H(a,b) + H(a) + H(b)

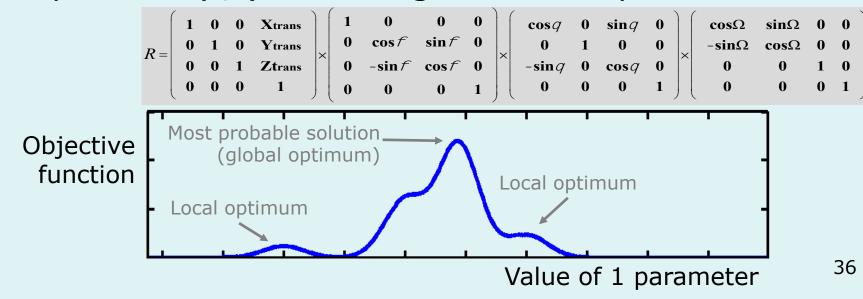
Where
$$H(a) = -\int_a P(a) \log_2 P(a)$$
 and $H(a,b) = -\int_{ab} P(a,b) \log_2 P(a,b)$

Within-subject registration

- Realign images I (fixed) and J (moving):
- Criteria to optimize:

$$\rightarrow c(I,J) = MI(I,J)$$

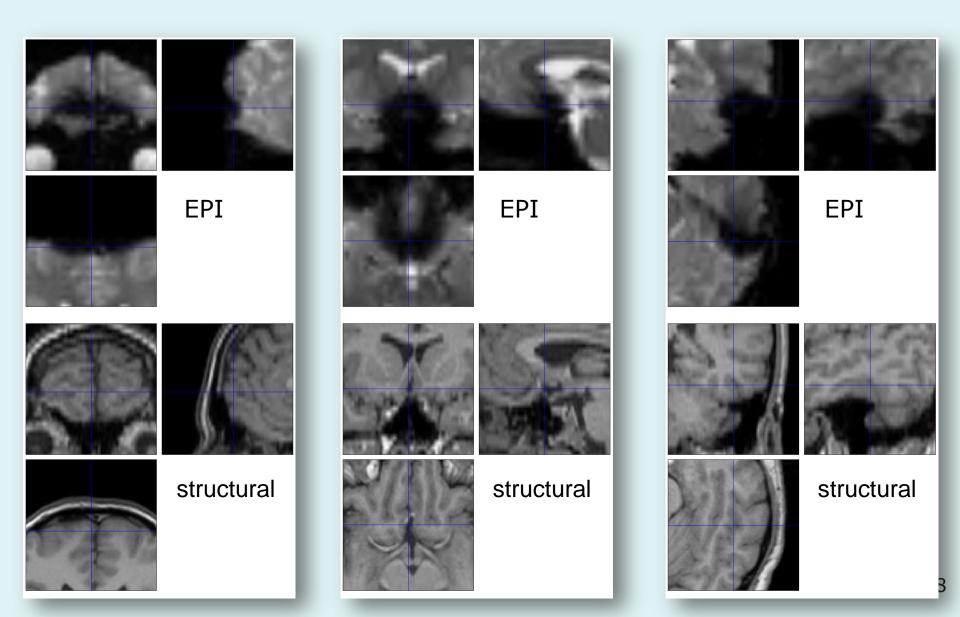
- c(I,J) depends on J's orientation, which depends on R's 6 parameters
 - Optimize c(I,J) according to those 6 parameters!



"CheckReg" to assess alignment



EPI dropout and distortion



Voxel-to-world transformation

 Registering image B (source) to image A (target) will update B's voxel-to-world mapping.

Img A:
$$vx = M_A \longrightarrow mm$$

Img B: $vx = M_B \longrightarrow mm$

- Mapping from voxels in B to voxels in A is by combining M_B and R: M*_B = M_B R
 - B-to-world using M^*_B , then world-to-A using $M_A^{-1} \implies M^*_B M_A^{-1}$

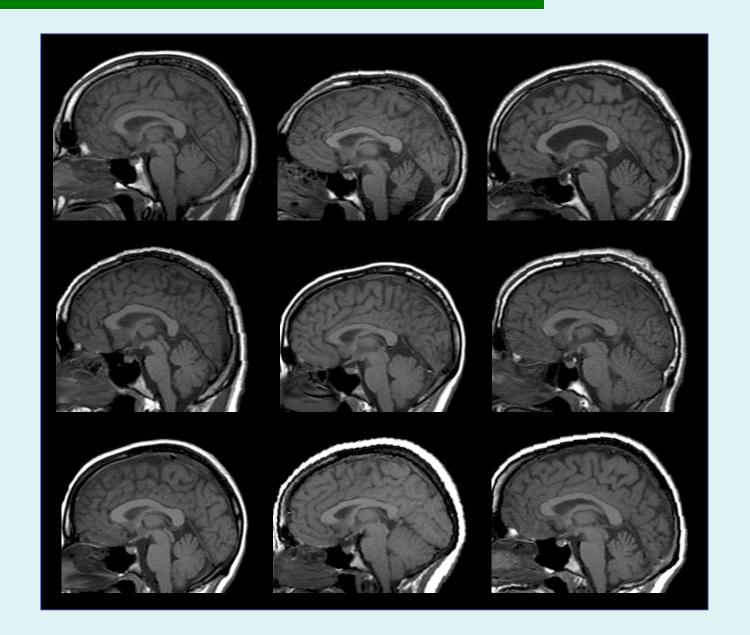
Content

- Preliminaries
- Within-subject
- Between-subject

Unified segmentation for spatial normalisation

- Gaussian mixture model
- Intensity non-uniformity correction
- Deformed tissue probability maps
- Smoothing
- Conclusion

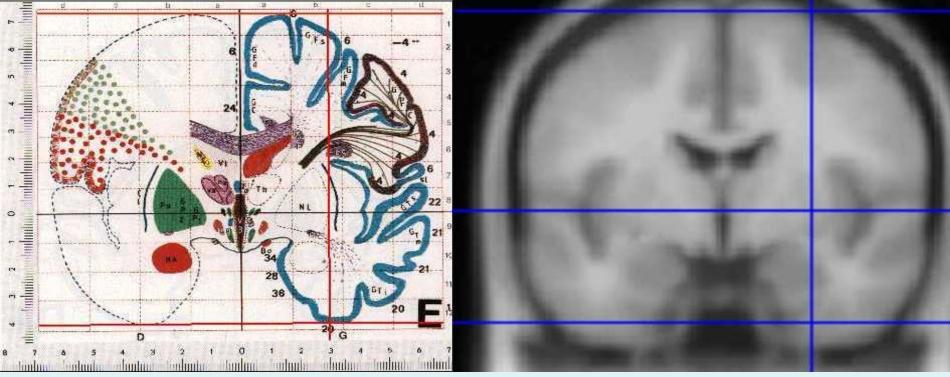
Brains of different subjects vary in *shape* and *size*.



Brains of different subjects vary in *shape* and *size*.

- → Need to bring them all into a common anatomical space.
 - Examine homologous regions across subjects
 - Improve anatomical specificity
 - Improve sensitivity
 - Report findings in a common anatomical space (e.g. MNI space)

The Talairach Atlas The MNI/ICBM AVG152 Template



The MNI template follows the *convention* of T&T, but does NOT match the *particular brain*

Recommended reading: http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach

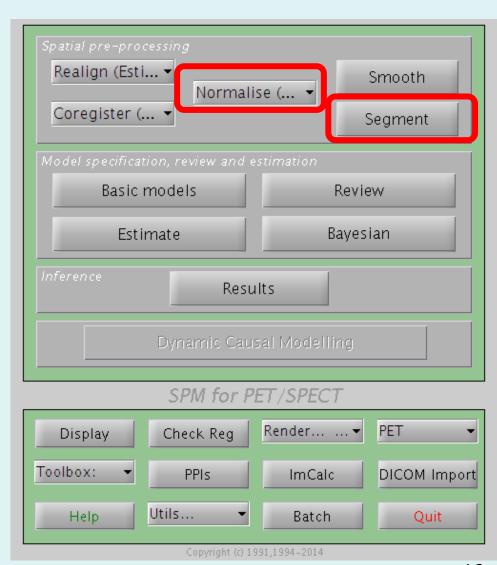
- Brains of different subjects vary in shape and size.
 - → Need to bring them all into a common anatomical space.
 - Examine homologous regions across subjects
 - Improve anatomical specificity
 - Improve sensitivity
 - Report findings in a common anatomical space (e.g. MNI space)
- In SPM12, alignment is achieved by matching GM with GM and WM with WM.
 - With possible alignment of other tissues.

Normalise/Segment

 This is the same algorithm as for tissue segmentation.

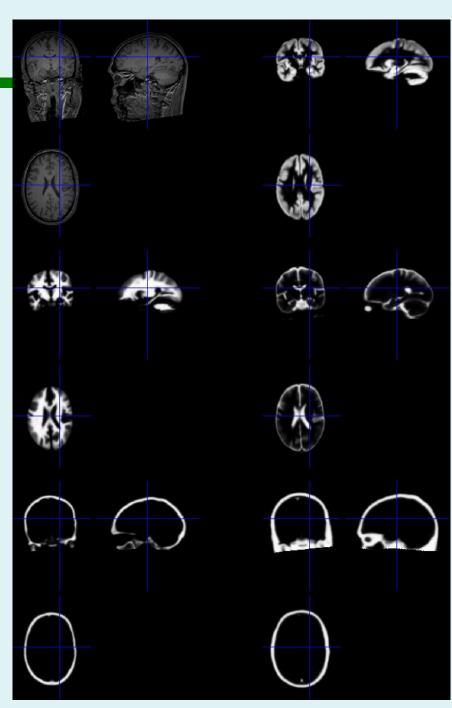
Combines:

- Mixture of Gaussians (MOG)
- Bias CorrectionComponent
- Warping (Non-linear Registration)Component



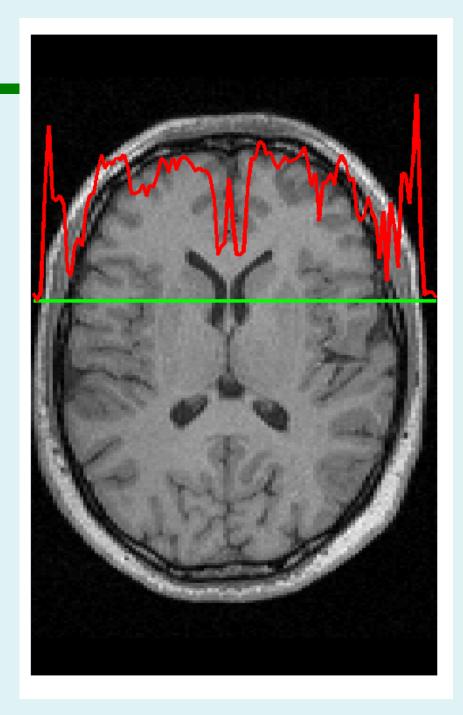
Spatial normalisation

- Default spatial normalisation in SPM12 estimates nonlinear warps that match tissue probability maps to the individual image.
- Spatial normalisation achieved using the inverse of this transform.

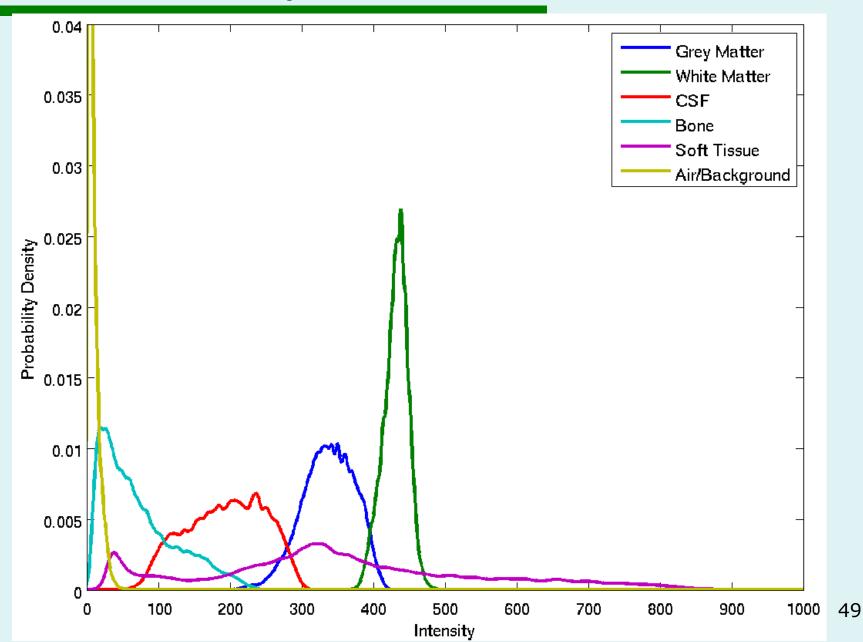


Segmentation

- Segmentation in SPM12 also estimates a spatial transformation that can be used for spatially normalising images.
- It uses a generative model, which involves:
 - Mixture of Gaussians (MOG)
 - Warping (Non-linear Registration) Component
 - Bias Correction Component



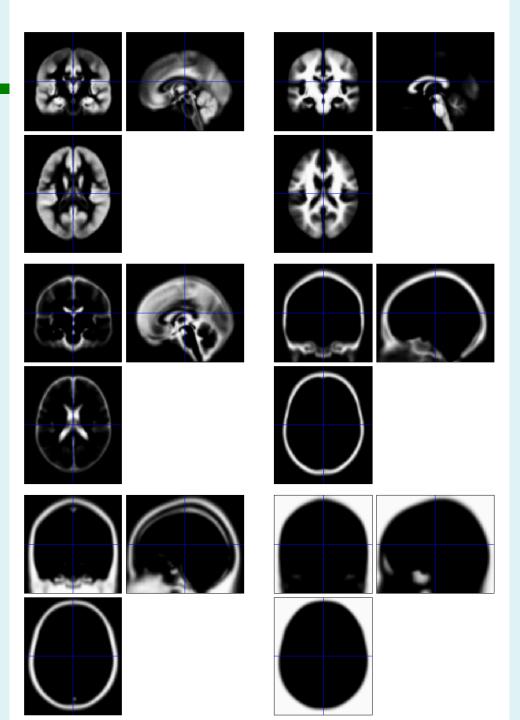
Tissue intensity distributions (T1w-MRI)



TPM's

Tissue probability maps in SPM12.

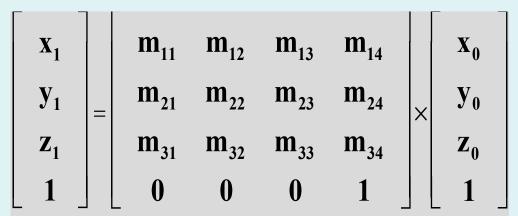
- GM, WM & CSF
- Additional nonbrain tissue classes



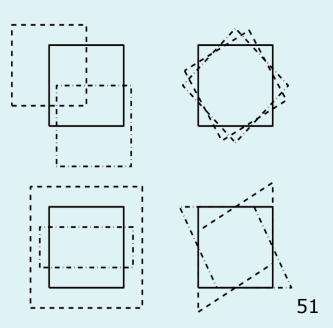
Modelling deformations, affine transform

12 parameter affine transform

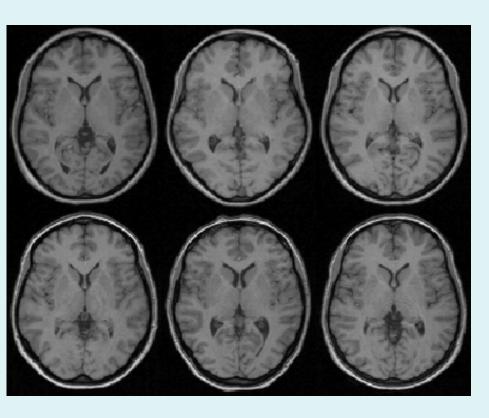
- 3 translations
- 3 rotations
- -3 zooms
- -3 shears



- → Fits overall shape and size
- → Need warping for local deformation



Spatial normalisation results



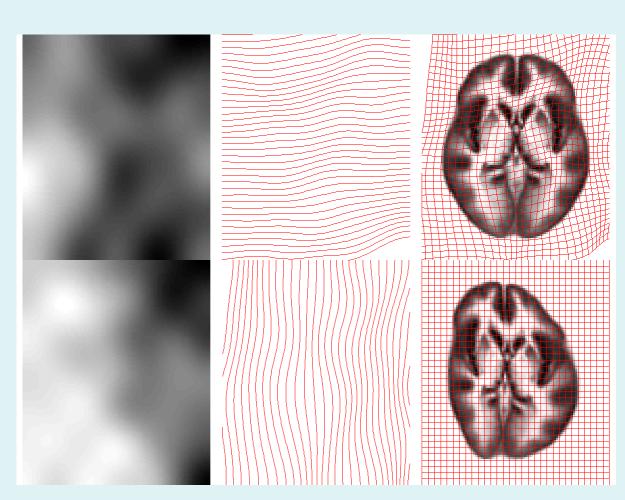
Affine registration

Modelling deformations, warps

 Tissue probability images are warped to match the subject

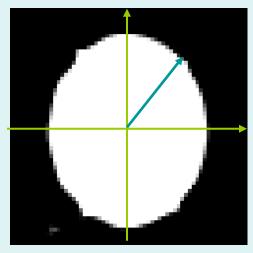
 The inverse transform warps to the TPMs

 Warps are constrained to be reasonable by penalising various distortions (energies)



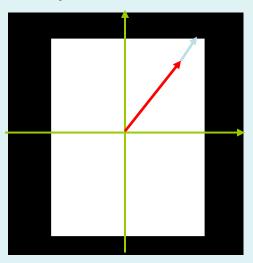
Non-linear warping, example

For every voxel position in blank sheet

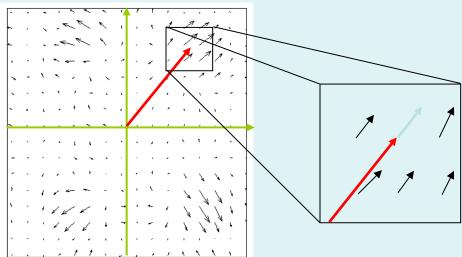


Get position in original space by adding pertinent displacement

Go to original image and find intensity at warped co-ordinate

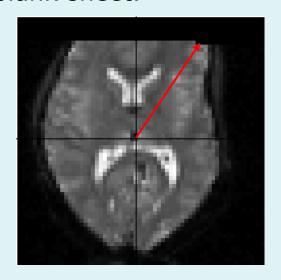


Template

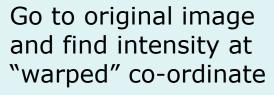


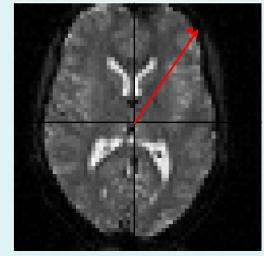
Non-linear warping, example

For each voxel-centre in blank sheet.

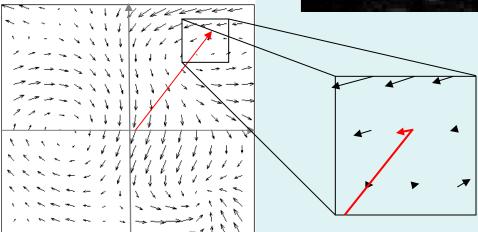


Get position in original space by adding pertinent displacement.

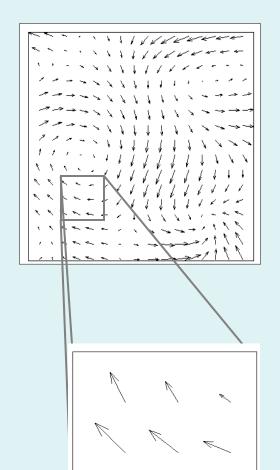




$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d_x(x,y) \\ d_y(x,y) \end{bmatrix}$$

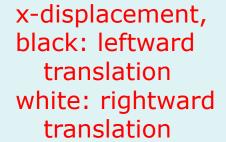


Displacement map



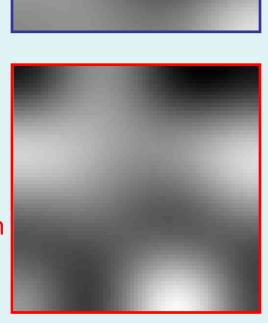
y-displacement, black: downward translation white: upward translation

grey: no translation



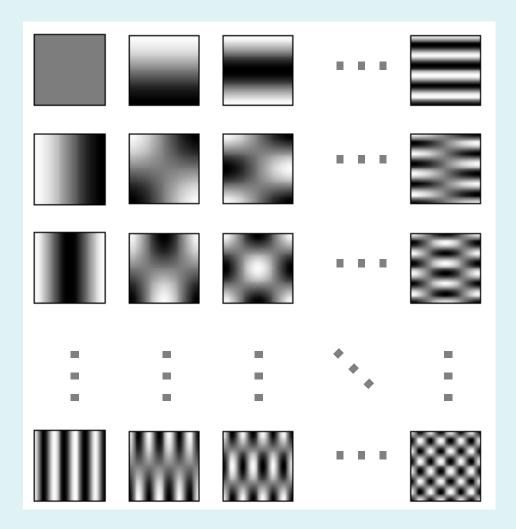
gray: no translation

y-displacement



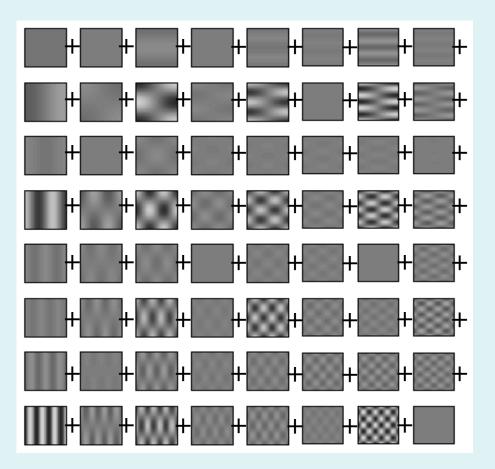
Displacement map modelling

- To prevent impossible deformations we restrict it to be a linear combination of permitted basiswarps.
- For example use the discrete cosine set → smooth deformation!

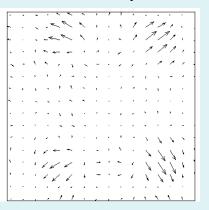


Displacement maps, example

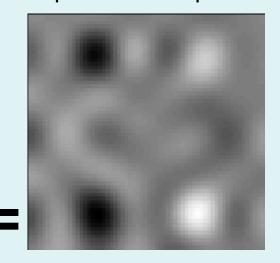
Each basis-warp multiplied by a weight



Square-to-ellipse map

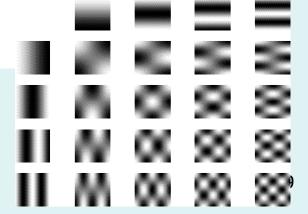


x-component of square-to-ellipse map



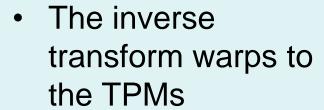
Displacement maps, example

Dark - shift left, Light - shift right Deformation Field in X Field Applied To Image Dark - shift down, Light - shift up Deformation Field in Y Deformed Image

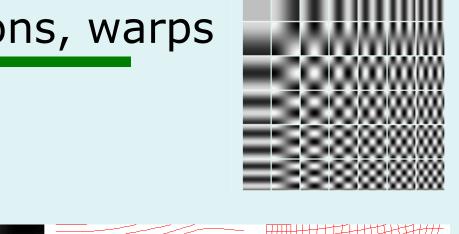


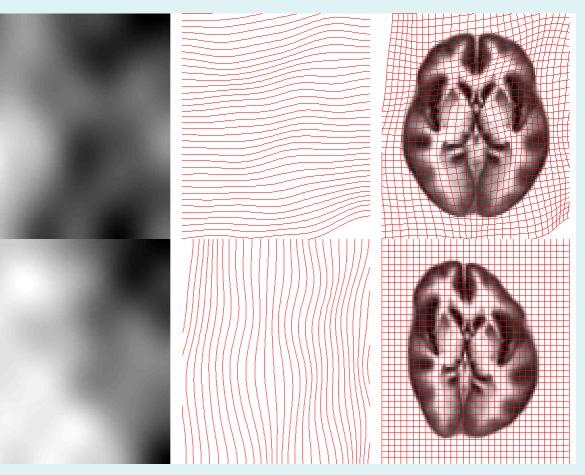
Modelling deformations, warps

 Tissue probability images are warped to match the subject

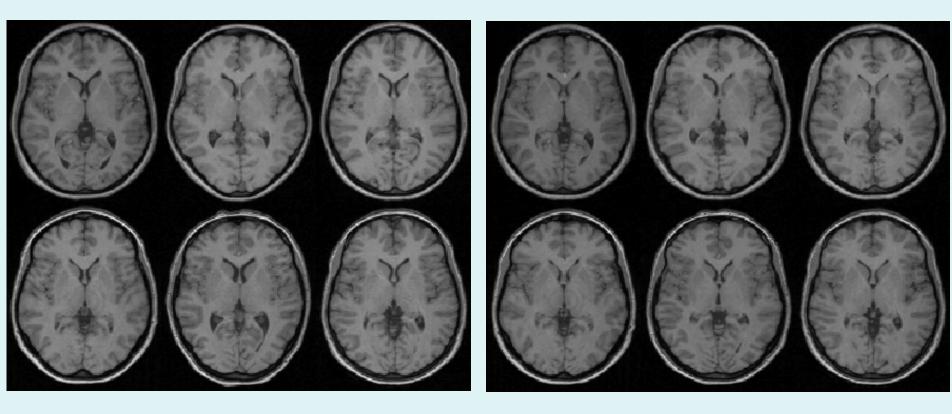


 Warps are constrained to be reasonable by penalising various distortions (energies)





Spatial normalisation results

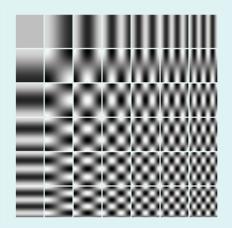


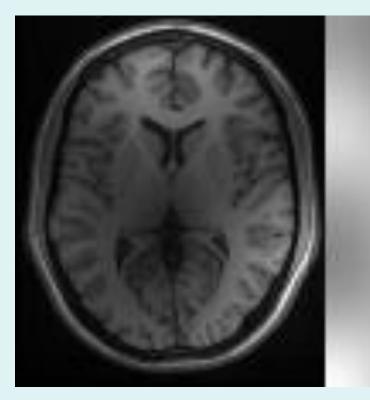
Affine registration

Non-linear registration

Modelling inhomogeneity

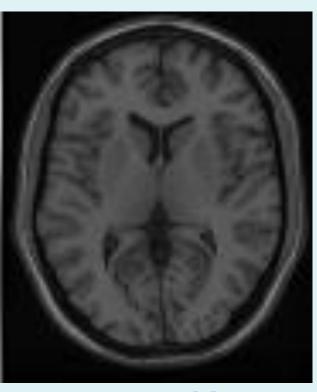
A multiplicative bias field is modelled as a spatially smooth image





Corrupted image

Bias Field

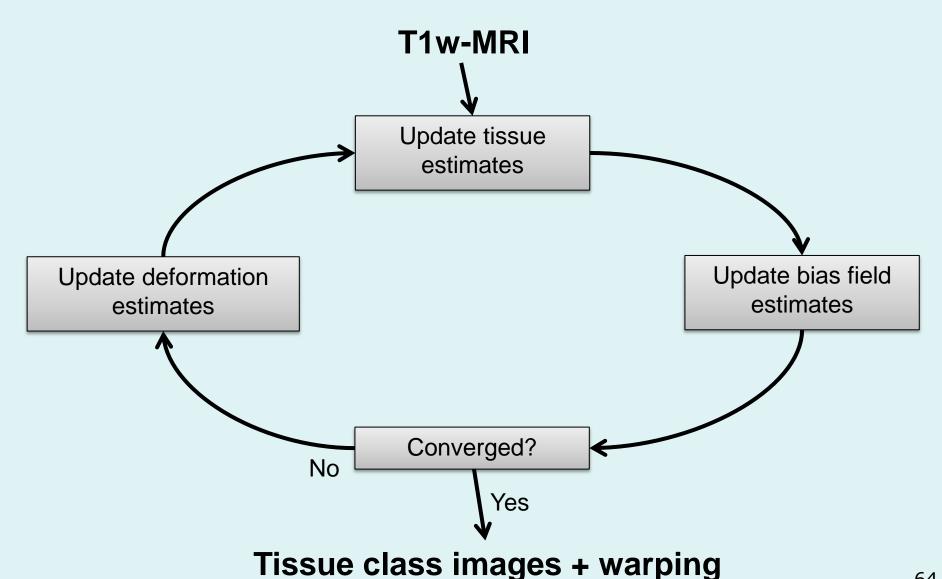


Corrected image

Normalisation & Unified Segmentation

- MRI imperfections make normalisation harder
 - Differences between sequences, artefacts
 - Intensity inhomogeneity or "bias" field
- Normalising segmented tissue maps should be more robust and precise than using the original images ...
- ... Tissue segmentation benefits from spatiallyaligned prior tissue probability maps (from other segmentations)
- → Circular reasoning!

Iterative optimisation scheme



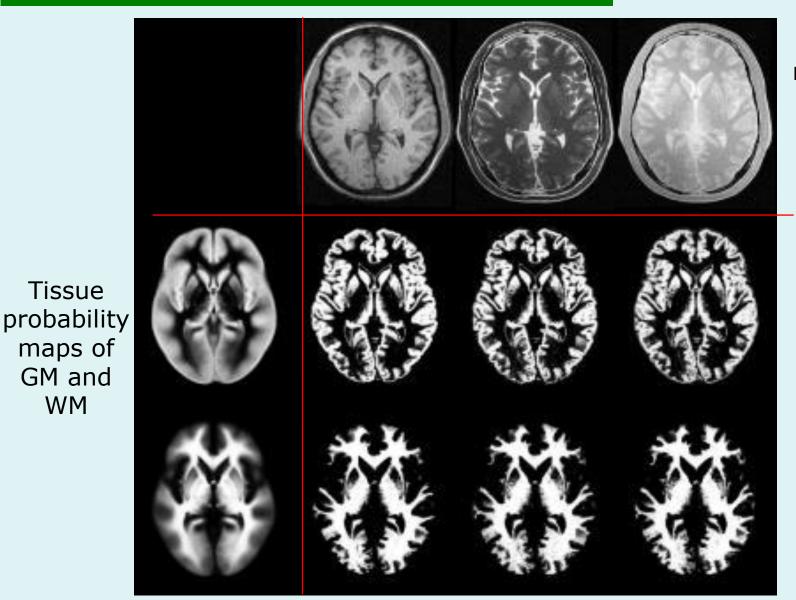
Segmentation results

Tissue

maps of

GM and

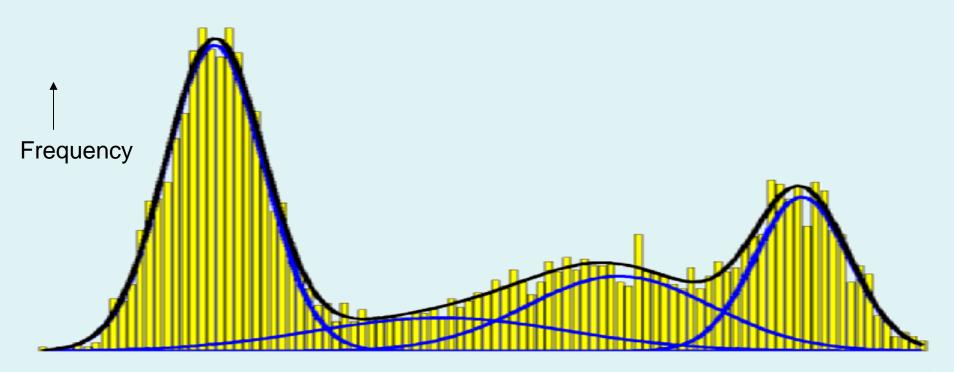
WM



Spatially normalised BrainWeb phantoms (T1, T2, PD)

Mixture of Gaussians (MoG)

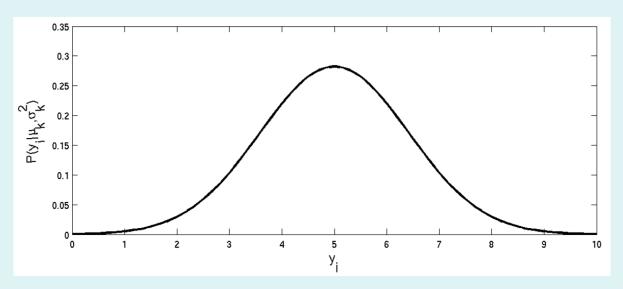
Classification is based on a Mixture of Gaussians model (MOG), which represents the intensity probability density by a number of Gaussian distributions.



Gaussian probability density

If intensities are assumed to be Gaussian of mean μ_k and variance σ^2_k , then the probability of a value y_i is:

$$P(y_i \mid \mu_k, \sigma_k^2) = \frac{1}{\sqrt{2\pi\sigma_k^2}} exp\left(-\frac{(y_i - \mu_k)^2}{2\sigma_k^2}\right)$$

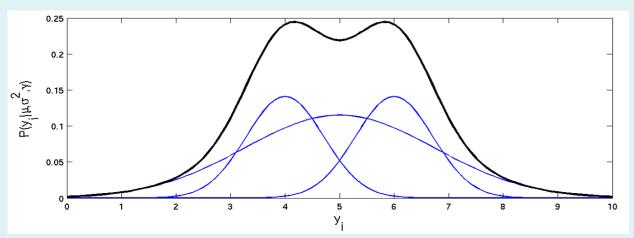


Non-Gaussian probability density

A non-Gaussian probability density function can be modelled by a Mixture of Gaussians (MOG):

$$P(y_i \mid \mu, \sigma^2, \gamma) = \sum_{k=1}^{K} \gamma_k \frac{1}{\sqrt{2\pi q_k^2}} exp\left(-\frac{(y_i - \mu_k)^2}{2q_k^2}\right)$$

Mixing proportion - positive and sums to one

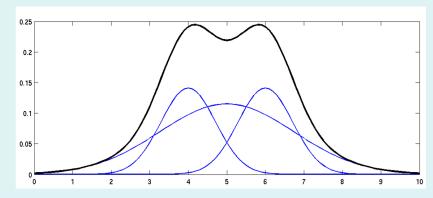


Mixing proportions

• The mixing proportion γ_k represents the prior probability of a voxel being drawn from class k - irrespective of its intensity.

$$P(c_i = k | \gamma) = \gamma_k$$

So:



$$P(\mathbf{y}_{i} \mid \mu, \sigma^{2}, \gamma) = \sum_{k=1}^{K} P(\mathbf{y}_{i}, \mathbf{c}_{i} = k \mid \mu, \sigma^{2}, \gamma)$$

$$= \sum_{k=1}^{K} P(\mathbf{c}_{i} = k \mid \gamma) P(\mathbf{y}_{i} \mid \mathbf{c}_{i} = k, \mu, \sigma^{2})$$

Probability of whole image

 If the voxels are assumed to be independent, then the probability of the whole image is the product of the probabilities of each voxel:

$$P(\mathbf{y} \mid \mu, \sigma^2, \gamma) = \prod_{i=1}^{I} P(\mathbf{y}_i \mid \mu, \sigma^2, \gamma)$$

 It is often easier to work with negative log-probabilities:

$$-\log(P(\mathbf{y} \mid \mu, \sigma^2, \gamma)) = -\sum_{i=1}^{I} \log(P(\mathbf{y}_i \mid \mu, \sigma^2, \gamma))$$

Modelling a bias field

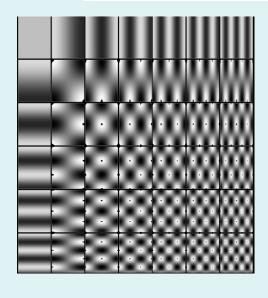
- A bias field is included, such that the required scaling at voxel i, parameterised by β, is ρ_i(β).
- Replace the means by $\mu_k/\rho_i(\beta)$
- Replace the variances by $(\sigma_k/\rho_i(\beta))^2$

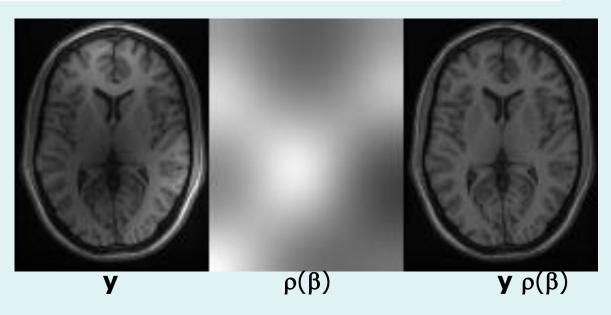
$$P(y_i \mid c_i = k, \mu, \sigma^2, \beta) = \frac{1}{\sqrt{2\pi(\sigma_k/\rho_i(\beta))^2}} exp\left(-\frac{(y_i - \mu_k/\rho_i(\beta))^2}{2(\sigma_k/\rho_i(\beta))^2}\right)$$

Modelling a bias field

After rearranging:

$$P(y_i \mid c_i = k, \mu, \sigma^2, \beta) = \frac{\rho(\beta)}{\sqrt{2\pi\sigma_k^2}} exp\left(-\frac{(y_i \rho_i(\beta) - \mu_k)^2}{2\sigma_k^2}\right)$$

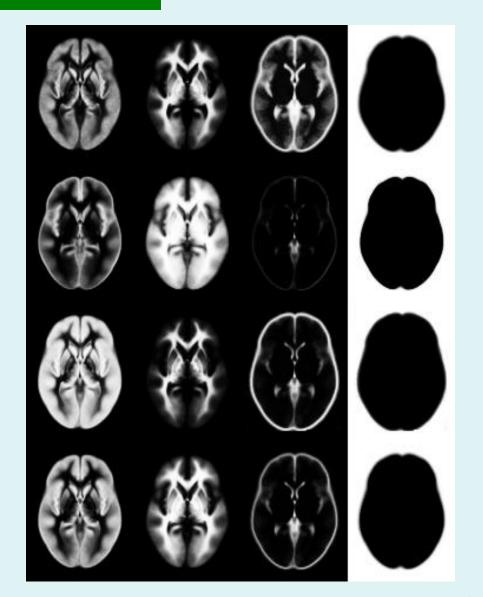




"Mixing proportions"

- Tissue probability maps for each class are included.
- The probability of obtaining class k at voxel i, given weights γ is then:

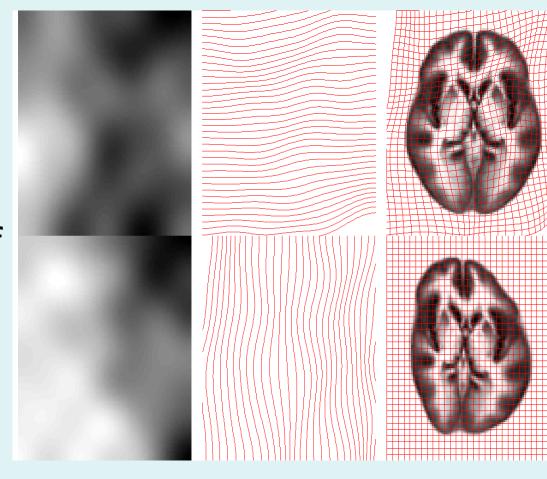
$$P(c_{i} = k | \gamma) = \frac{\gamma_{k}b_{ik}}{\sum_{j=1}^{K} \gamma_{j}b_{ij}}$$



TPMs deformation

- Tissue probability images are deformed according to parameters α.
- The probability of obtaining class k at voxel i, given weights γ and parameters α is

then:



$$P(c_{i} = k \mid \gamma, \alpha) = \frac{\gamma_{k}b_{ik}(\alpha)}{\sum_{j=1}^{K} \gamma_{j}b_{ij}(\alpha)}$$

The extended US model

• By combining the modified $P(c_i=k|\theta)$ and $P(y_i|c_i=k,\theta)$, the overall objective function (E) becomes:

$$E = -\sum_{i=1}^{I} log[P(y_i|\theta)] = -\sum_{i=1}^{I} log\left[\sum_{k=1}^{K} P(c_i = k \mid \theta) P(y_i|c_i = k, \theta)\right]$$

$$= -\sum_{i=1}^{I} log \left[\rho_i(\beta) \sum_{k=1}^{K} \frac{\gamma_k b_{ik}(\alpha)}{\sum_{j=1}^{K} \gamma_j b_{ij}(\alpha)} \frac{1}{\sqrt{2\pi\sigma_k^2}} exp \left(-\frac{\left(\rho_i(\beta) y_i - \mu_k\right)^2}{2\sigma_k^2} \right) \right]$$

The Objective Function

Optimisation

- The "best" parameters are those that minimise this objective function.
- Optimisation involves finding them.
- Begin with starting estimates, and repeatedly change them so that the objective function decreases each time.

$$E = -\sum_{i=1}^{I} log \left[\rho_{i} \left(\beta \right) \sum_{k=1}^{K} \frac{\gamma_{k} b_{ik} (\alpha)}{\sum_{j=1}^{K} \gamma_{j} b_{ij} (\alpha)} \frac{1}{\sqrt{2\pi\sigma_{k}^{2}}} exp \left(-\frac{\left(\rho_{i} \left(\beta \right) \gamma_{i} - \mu_{k} \right)^{2}}{2\sigma_{k}^{2}} \right) \right]$$

Optimisation strategy

Repeat until convergence...

– Hold γ , μ , σ^2 and α constant, and minimise E w.r.t. β

Levenberg-Marquardt strategy, using dE/d β and d²E/d β ²

– Hold γ , μ , σ^2 and β constant, and minimise E w.r.t. α

Levenberg-Marquardt strategy, using dE/d α and d²E/d α ²

– Hold α and β constant, and minimise E w.r.t. γ , μ and σ^2

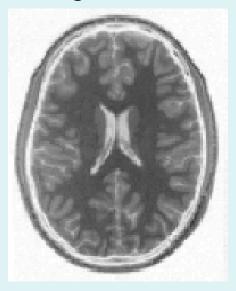
Use an Expectation Maximisation (EM) strategy.

end

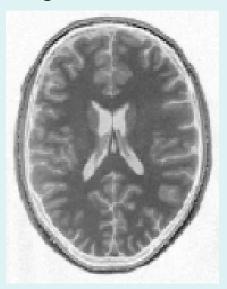
Spatial normalisation, overfitting

Without regularisation, the non-linear spatial normalisation can introduce unnecessary warps.

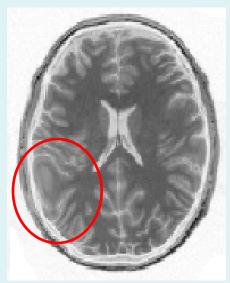
Template image



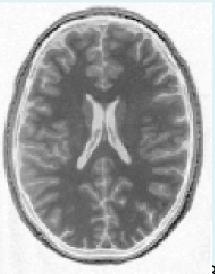
Affine registration.



Non-linear registration without regularisation.



Non-linear registration using regularisation.



Linear regularisation

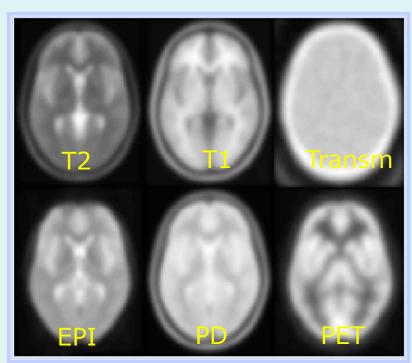
- Some bias fields and distortions are more probable (a priori) than others.
- Encoded using Bayes rule:

$$-\log[P(\theta, y)] = -\log[P(y|\theta)] - \log[P(\theta)]$$

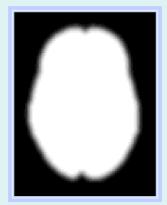
- Prior probability distributions can be modelled by a multivariate normal distribution.
 - Mean vector μ_a and μ_b
 - Covariance matrix Σ_a and Σ_b
 - $-\log[P(\mathbf{a})] = (\mathbf{a}-\mathbf{m_a})^T \mathbf{S_a}^{-1} (\mathbf{a}-\mathbf{m_a}) + \text{const}$

Old fashioned template matching

Minimise mean squared difference from image to template image(s)



Template Images



Spatial normalisation can be weighted so that non-brain voxels do not influence the result.

Similar weighting masks can be used for normalising lesioned brains.

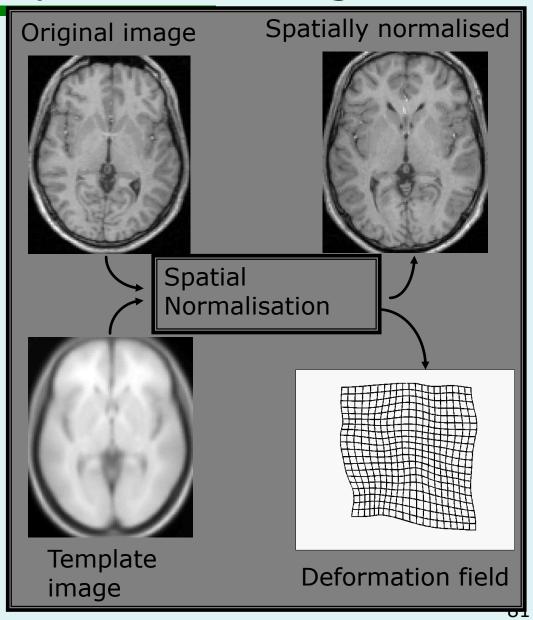
Old fashioned template matching

Determine the spatial transformation that minimises the sum of squared difference between an image and a linear combination of one or more templates.

Begins with an affine registration to match the size and position of the image.

Followed by a global nonlinear warping to match the overall brain shape.

Uses a Bayesian framework to simultaneously minimize the bending energies of the warps.

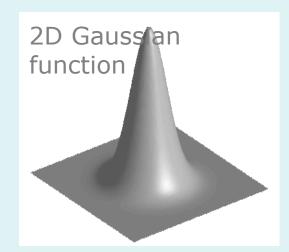


Content

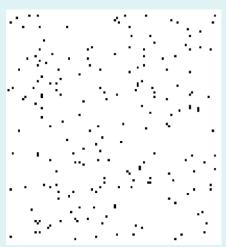
- Preliminaries
- Within-subject
- Between-subject
- Smoothing
- Conclusion

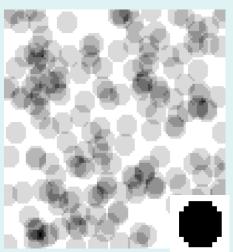
Smoothing, principle

- Smoothing is done by convolution.
- Each voxel after smoothing effectively becomes the result of applying a weighted region of interest (ROI).
- Gaussian function, defined by its "full width at half maximum" (FWHM)

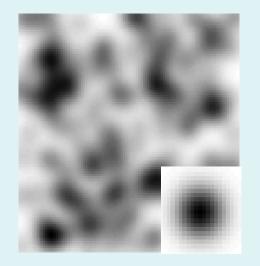


Before convolution Convolved with a circle



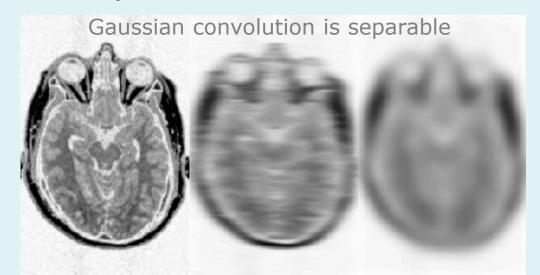


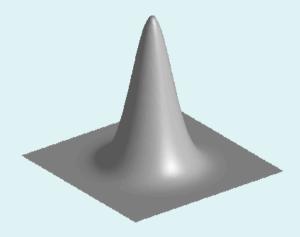
Convolved with a Gaussian



Smoothing, why blur the data?

- Improves spatial overlap by blurring over minor anatomical differences and registration errors
- Averaging neighbouring voxels suppresses noise
 - matched filter theorem
- Makes data more normally distributed (central limit theorem)
- Reduces the effective number of multiple comparisons

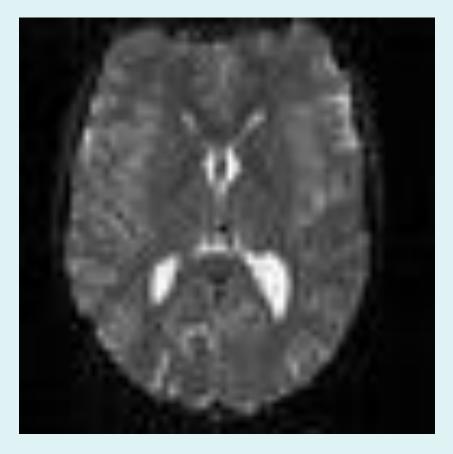


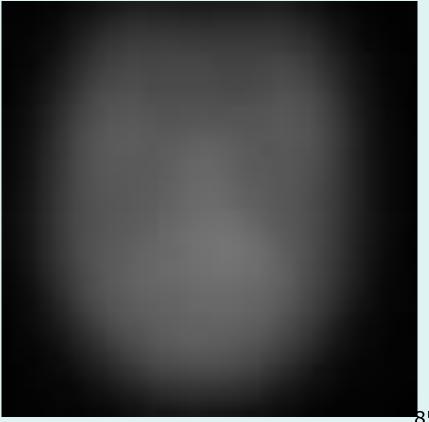


Smoothing, kernel size

Decide a priori, based on:

- Population, i.e. noise & inter-subject variability
- Expected activation size

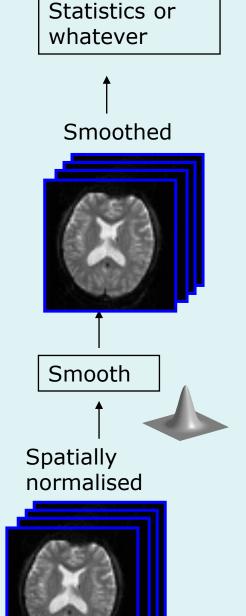


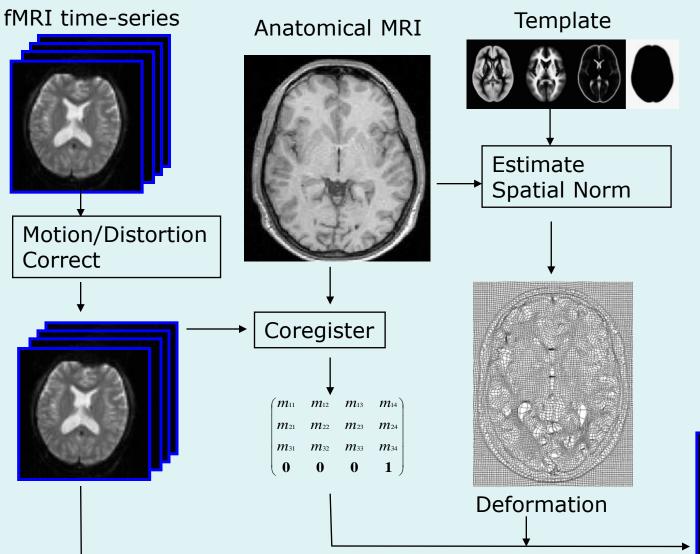


Content

- Preliminaries
- Within-subject
- Between-subject
- Smoothing
- Conclusion

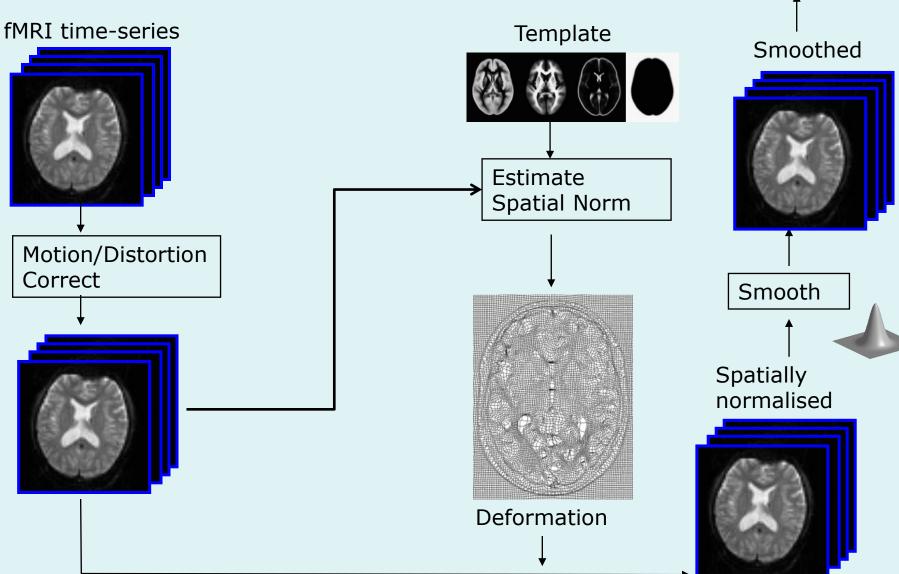
Pre-processing overview





Alternative pipeline

Statistics or whatever Smoothed Smooth Spatially normalised



References

- Friston et al. Spatial registration and normalisation of images. Human Brain Mapping 3:165-189 (1995).
- Collignon et al. Automated multi-modality image registration based on information theory. IPMI'95 pp 263-274 (1995).
- Thévenaz et al. Interpolation revisited.
 IEEE Trans. Med. Imaging 19:739-758 (2000).
- Andersson et al. Modeling geometric deformations in EPI time series. Neuroimage 13:903-919 (2001).
- Hutton et al. Image distortion correction in fMRI: a quantitative evaluation. NeuroImage 16:217-240 (2002).
- Ashburner & Friston. Unified Segmentation. NeuroImage 26:839-851 (2005).