
INTRODUCTION	TO	ALGORITHMS

GIGA	Doctoral	School		
Introduction	to	Scientific	Computing

Dr.	Mohamed	Ali	Bahri,	
Logis:cien	de	recherche	principal,	
GIGA-Cyclotron	Research	Centre:	In	Vivo	Imaging,	

▶ Introduction	

▶ Types	of	algorithms	

▶ Classification	of	algorithms	

▶ Expressing	algorithms		

▶ Constructs	of	an	algorithm	

▶ The	concept	of	subalgorithm	

▶ Examples	

▶ Algorithm	complexity

Outline

Definition:	

▶ An	algorithm	is	step-by-step	procedure	with	the	aim	of	solving	a	problem.	

▶ Algorithms	are	often	used	in	many	real	life	problems	

▶ In	computer	science,	an	algorithm	has	a	special	meaning.	It	is	defined	to	have	these	features:	

- An	algorithm	must	have	some	data	to	operate	on	it	
- It	must	produce	at	least	one	result	
- It	must	terminate	after	a	finite	numbers	of	steps	

Introduction

History:	

▶ History	of	algorithms	can	be	traced	back	to	the	ancient	Greeks	

▶ An	efficient	method	for	finding	the	Greatest	Common	Divisor	was	proposed	by	Euclid	

▶ Study	of	algorithm	was	done	by	Mohammed	ibn	mussa	al-Khowarizmi

Introduction

The	types	of	algorithms	depends	on	the	type	of	task	to	be	solved.	

❖ Searching	

• Designed	to	search	for	a	given	item	in	large	data	set	
❖ Sorting		

• Used	to	arrange	data	items	in	ascending	or	descending	order	
❖ Compression		

• Meant	to	reduce	the	size	of	data	and	program	files	
• Commonly	used	for	compression	of	images,	audio	and	video	data	

Types	of	Algorithms

Types	of	Algorithms

❖ Fast	Fourier	Transforms	
• Used	in	Digital	Signal	Processing	(DSP)	

❖ Encoding	
• Used	for	encryption	of	data	

❖ Geometric	
• Used	for	identification	of	geometric	shapes	

❖ Pattern	Matching	
• Comparing	images	and	shapes

Classification	of	Algorithms
Depending	on	the	strategy	used	for	solving	a	particular	problem,	algorithms	are	

classified	as	follows:		

❑ Divide-and-Conquer	Algorithms	

o A	given	problem	is	fragmented	into	sub-problems	which	are	solved	partially	
o The	algorithm	is	stopped	when	further	sub-division	cannot	be	performed	
o These	algorithms	are	frequently	used	in	searching	and	sorting	problems

Classification	of	Algorithms
❑ Iterative	Algorithms	

o Certain	steps	are	repeated	in	loops,	until	the	goal	is	

achieved	
o An	example	of	an	iterative	algorithm	is	sorting	an	

array	
❑ Greedy	Algorithms	

o In	a	Greedy	algorithm	an	immediately	available	best	

solution	at	each	step	is	chosen	
o Useful	for	solving	graph	theory

A

B15
2

10

7

103

8

3

Classification	of	Algorithms
❑ Back-Tracking	Algorithms	

o In	back	tracking	algorithms,	all	possible	solutions	

are	explored	until	the	end	is	reached,	afterwards	

the	steps	are	traced	back	
o These	are	useful	in	graph	theory.		
o Back	tracking	algorithms	are	used	frequently	for	

traversing	trees
A

B15
2

10

7

103

8

3

Expressing	Algorithms
❑ Describing	algorithms	requires	a	notation	for	expressing	a	sequence	of	steps	to	be	performed.	
❑ Algorithms	can	be	expressed	in	many	kinds	of	notation,	including	natural	languages,	pseudocode,	flowcharts	

Natural	Language	

❑ English	words	and	sentences	can	be	used	to	express	statements	and	processing	steps	

• For	example,	words	like	read,	write,	compute	and	set	can	be	used	for	Input-Output	operations,	computations	and	assigning	values	

to	variables.		
• Comparison	operations	are	expressed	as	equal	to,	less	than,	greater	than	
• Arithmetical	operations	are	expressed	using	words	like	add,	subtract,	divide	and	multiply	
• Control	structures	are	expressed	using	sentences	like	repeat	for,	while,	if,	halt,	exit	

❑ Example:	Find	the	largest	element	in	a	list/array	of	five	integers.

https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Flowchart

6 15 9 25 3

6 15 9 25 3

6 15 9 25 3

6 15 9 25 3

6 15 9 25 3

6 15 9 25 3

Step	1

Step	2

Step	3

Step	4

Step	5

6

15

15

25

25

Largest

25

Output	resultInput	List

FindTheLargest

What	you	would	do?

Step	1:	 Set	Largest	to	the	first	number.

Step	2:	 If	the	second	number	is	greater	than	Largest,	set	Largest	to	the	second	number.

Step	3:	 	If	the	third	number	is	greater	than	Largest,	set	Largest	to	the	third	number

Step	4:	If	the	fourth	number	is	greater	than	Largest,	set	Largest	to	the	fourth	number

Step	5:	 	If	the	fifth	number	is	greater	than	Largest,	set	Largest	to	the	fifth	number

6 15 9 25 3 25

Output	resultInput	List

FindTheLargest

What	does	it	mean	in	natural	language?

Could	you	express	it	in	a	more	simple	way?

Step	0:	 Set	Largest	to	0

Step	1:	 If	the	current	number	is	greater	than	Largest,	set	Largest	to	the	current	number.

…

…

Step	5:	 	If	the	current	number	is	greater	than	Largest,	set	Largest	to	the	current	number

6 15 9 25 3 25

Output	resultInput	List

FindTheLargest

Set	Largest	to	0.

If	the	current	number	is	greater	than	Largest,	set	Largest	to	the	current	number.

Repeat	the	following	N	times: Output	resultInput	List

FindTheLargest

Input/read:	list	of	N	integers	

Set	Largest	to	0	

Repeat	the	following	N	times	

If	the	current	number	is	greater	than	Largest,	Set	Largest	to	the	current	number	

Output	Largest	

End

Expressing	Algorithms

Input/read:	list	of	N	integers	

Set	Largest	to	0	

Repeat	the	following	N	times	

If	the	current	number	is	greater	than	Largest,	

	 	Set	Largest	to	the	current	number	

Output	Largest	

End

Use	of	Pseudocode	
❑ Algorithms	in	natural	language	tend	to	be	wordy	and	

verbose	
❑ Pseudocode	provides	an	alternative	way	of	expressing	

algorithms	
❑ It	is	a	mixture	of	natural	language	and	programming	

notation	
❑ In	practice	several	conventions	are	used	to	write	

pseudocode

Expressing	Algorithms
Use	of	Pseudocode	
• Algorithm	is	identified	by	a	name	

• Comments	are	enclosed	in	square	brackets	

• Assignment	statement	is	coded	using	left	arrow	
• Operators	:	(+,	-,	*,	/,	<,	>,	=,	!=)	
• Input	and	Output	:	read	and	write	
• Control	Structures	:	if-then,	if-then-else	
• Repetitive	operations	:	Repeat,	for,	while,	until

						FindTheLargest	

						Input:	A	list	of	positive	integers	

1.		Set	Largest	to	0	

2.		while	(more	integers)	

3.				if	(the	current	integer	is	greater	than	Largest)	

4.	 then	

5.						 	 Set	Largest	to	the	value	of	the	current	integer	

6.					end	if	

7.			End	while	

8.		Return	Largest	

9.		End

Flowchart	Rules:	

1. Flowchart	is	generally	drawn	from	top	
to	bottom	

2. All	boxes	of	flowchart	must	be	
connected	

3. All	flowchart	start	with	terminal	or	
process	symbol	

4. Decision	symbol	have	2	exit	points,	
one	for	YES	(TRUE)	and	another	for	
NO	(FALSE)

More	
numbers

Add	current	
number	to	sum

no

Yes

Set	sum	to	0

Return	sum

start/stop

input/output

decision	making

process

predefined	process

loop

conector

flow	direction

Expressing	Algorithms
Flowchart	

Constructs	of	an	algorithm
do action 1
do action 2
…
…
…
do action n

if a condition is true.
Then

do a series of actions
Else

do a series of actions

While a condition is true.

do action 2
…
…
…
do action n

Sequence

Decision

Repetition

						FindTheLargest	

						Input:	A	list	of	positive	integers	

1.		Set	Largest	to	0	

2.		while	(more	integers)	

3.				if	(the	current	integer	is	greater	than	Largest)	

4.	 then	

5.						 	 Set	Largest	to	the	value	of	the	current	integer	

6.					end	if	

7.			End	while	

8.		Return	Largest	

9.		End

action 1
action 2

…
…
…

action n

If (condition)
then
 action
 action
 …
else
 action
 action
 …

End if

While (condition)
action
action
…

End while

Sequence Decision Repetition

Constructs	&	pseudocode	

Constructs	of	an	algorithm

start/stop

input/output

decision	making

process

predefined	process

loop

conector

flow	direction

Action n

Action 2

Action 1

A	sequence	of	
actions

Another	sequence	
of	actions

False TrueTest
While	

condition

A	sequence	of	
actions

False

True

Sequence Decision Repetition

Constructs	&	Flowcharts	

Constructs	of	an	algorithm

The	concept	of	subalgorithm

						FindTheLargest	

						Input:	A	list	of	positive	integers	

1.		Set	Largest	to	0	

2.		while	(more	integers)	

						End	while	

3.		Return	Largest	

						End

2.1	FindLarger

FindLarger	

Input:	Largest	and	integer	

	if	(integer	greater	than	Largest)	

					then	

									1.1	Set	Largest	to	the	value	of	the	integer	

		End	if	

End

Examples	of	algorithms

						Summation	

						Input:	A	list	of	integers	

1.		Set	Sum	to	0	

2.		While(more	integers)	

2.1.	Add	current	number	to	sum	

								End	of	while	

3.		Return	Sum	

						End

						Multiplication	

						Input:	A	list	of	integers	

1.		Set	product		to	1	

2.		While(more	integers)	

2.1.	Multiply	current	number	by	product	

								End	of	while	

3.		Return	product	

						End

More	
numbers

Add	current	
number	to	sum

no

Yes

Set	sum	to	0

Return	sum

Summation/Multiplication	

❑ Given	a	list,	put	it	into	some	order	

	 Input:	sequence	(a1,	a2,…,	an)	of	numbers.	

	 Output:	permutation	(a’1,	a’2,	…,	a’n)	such	

	 																							that	a’1	≤	a’2,	≤	…	≤	a’n.	

❑ We	will	see	three	types	

▪ Insertion	sort	

▪ Selection	sort	

▪ Bubble	sort

6 15 9 25 3

Sorting	algorithms	

Examples	of	algorithms

3 6 9 15 25

Original	List

Sorted	List

Wall

Sorted unsorted

1 n

▶ It	starts	with	a	list	with	one	element,	and	inserts	new	elements	into	their	proper	place	in	the	

sorted	part	of	the	list.

Insertion-Sort

Sorting	algorithms	

Examples	of	algorithms

Original	List
Sorted unsorted

15 9 25 36

9 25 3156

25 3159

325159

251596

After	pass	1

After	pass	2

After	pass	3

After	pass	4

6

6

3

Insertion-Sort

Sorting	algorithms	

Examples	of	algorithms

While	there	are	more	elements	
In	the	unsorted	list

Find	where	the	current	element	
should	be	in	the	sorted	portion	

of	the	list

False

True

Place	the	wall	after	the	
First	element	of	the	list

Start

Move	all	elements	in	the	sorted	
portion	of	the	list	that	are	greater	
than	the	curent	element	up	by	

one

Put	the	current	element	into	it’s	
proper	place	in	the	sorted	

portion	of	the	list

Stop

						Insertion-Sort	

						Input:	A	list	of	integers	(a1,	a2,…,	an)		

1. for	j	=	2	to	A.length	

2.	 value	=	A[j]	

3.	 Insert	A[j]	into	the	sorted	sequence	A[1	.	.	j-1]	

4.	 i	=	j-1	

5. 							While(i	>	0	and	A[i]	>	value)	

6.	 	 A[i+1]	=	A[i]	

7.	 	 i	=	i	-1	

8.	 End	of	while	

9.	 A[i+1]	=	value	

10.			End	of	for	

						End		(a’1,	a’2,	…,	a’n)	are	sorted

Sorting	algorithms	

Examples	of	algorithms
Pseudocode

Flowchart

Swap	(smallest	element	with	the	element	in	the	right	
of	the	wall	

Wall

Sorted unsorted

1 n

▶ Find	the	smallest	element	in	the	unsorted	list	and	swap	it	with	the	first	element	of	the	

unsorted	list.

Selection-Sort

Sorting	algorithms	

Examples	of	algorithms

Original	List6 15 9 25 3

9 25 1563

25 15963

251563

After	pass	1

After	pass	2

After	pass	3

After	pass	4

15 9 25 63

9

Insertion-Sort

Sorting	algorithms	

Examples	of	algorithms

Sorting	algorithms
Selection-Sort

						Selection-Sort	

						Input:	A	list	of	integers	(a1,	a2,…,	an)		

1.									for	i	=	1	to	A.length	-1	

2.																min	=	i	

3.															/*		check	the	element	to		be	minimum	*/	

4.	 for	j	=	i+1	to	A.length	

5.	 						if	A[j]	>	A[min]	then		

6.	 									Min	=	j	

7.	 						end	if	

8.																		end	for	

9.	 /*		swap	the	minimum	element	with	the	current	element	*/	

10	.																		If	indexMin	!=	i		then	

11.	 			swap	A[min]			and			A[i]	

12.														end	if	

13. End	for	

							End		(a’1,	a’2,	…,	a’n)	are	sorted

While	there	are	more	elements	
In	the	unsorted	list

Find	smallest	element	in	
unsorted	list.	

This	can	be	done	in	a	
subalgorithm	and	involves	a	loop

False

True

Place	the	wall	at	the	
beginning	of	the	list

Start

Swap	the	smallest	element	with	
the	first	element	of	the	

unsorted	list

Move	the	wall	one	element	to	
the	right

Stop

Wall

1 n

▶ One	of	the	least	efficient	algorithms	

▶ It	takes	successive	elements	and	«	bubbles	»	them	up/down	in	the	list.

sorted unsorted

Bubble	up

Bubble-Sort

Sorting	algorithms	

Examples	of	algorithms

Original	List6 15 9 25 3

9 15 2563

15 25963

251563

After	pass	1

After	pass	2

After	pass	3

After	pass	4

6 15 9 253

9

Bubble-Sort

Sorting	algorithms	

Examples	of	algorithms

						Bubble-Sort	

						Input:	A	list	of	integers	(a1,	a2,…,	an)		

1. for	i	=	1	to	A.length	

2.	 swapped	=	false	

3.	 for	j	=	1	to	A.length	

4.	 					[compare	the	adjacent	elements]	

5.	 						if	A[j]	>	A[j+1]	then		

6.	 									[swap	them]	

7.	 										swap(A[j],	A[j+1])	

8.	 										swapped	=	true

Sorting	algorithms	

Examples	of	algorithms

9.	 						end	if	
10.	 end	for	
11.	 [if	no	number	was	swapped	that	means	

12.	 					list	is	sorted	now,	break	the	loop.]	
13.	 if(not	swapped)	then	

14.	 				break	
15.														end	if	
16								End	for	
17.			End		(a’1,	a’2,	…,	a’n)	are	sorted	

▶ Given	a	list,	find	a	specific	element	in	the	list	

▶ We	will	see	two	types		

- Linear	search	(sequential	search)	
- Binary	search

4 21 36 14 62 8 15 9 25 3

Location	wanted

Target	given	(62)

Searching	algorithms	

Examples	of	algorithms

4 21 36 14 62 91 8 22 7 81 77 10

Location	wanted	
(4)

position

4 21 36 14 62 91 8 22 7 81 77 10

4 21 36 14 62 91 8 22 7 81 77 10

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

Target	given	
(62)

62	!=	4

62	!=	21

62	==	62

0

position

1

position

4

Linear	search	running	time	

• How	long	does	this	take?	

• If	the	list	has	n	elements	,	worst	case	
							scenario	is	that	it	takes	n	«	steps	»	

• Here,	a	step	is	considered	a	single		
							step	through	the	list.	

.	

.	

Searching	algorithms	

Examples	of	algorithms
Linear	search

4 7 8 10 14 21 22 36 62 77 81 91

first

0 1 2 3 4 5 6 7 8 9 10 11

22	>	21

0 5 11

Binary	search	=	List	MUST	be	sorted!
mid last

first

6 8 11

mid last

4 7 8 10 14 21 22 36 62 77 81 91

0 1 2 3 4 5 6 7 8 9 10 11

4 7 8 10 14 21 22 36 62 77 81 91
0 1 2 3 4 5 6 7 8 9 10 11

22	<	62first

6 6 7

mid last

22	==	22

Binary	search	running	time	

• How	long	does	this	take	(worst	case)?	

• If	the	list	has	8	elements	

• It	takes	3	steps	

• If	the	list	has	16	elements	

• It	takes	4	steps	

• If	the	list	has	64	elements		

• It	takes	6	steps	

• If	the	list	has	n	elements	

• It	takes	log2(n)	steps	

Target	given	
(22)

Searching	algorithms	

Examples	of	algorithms

Algorithm	complexity
Space	complexity	

❑ How	much	space	is	required?	

Time	complexity	

❑ How	much	time	does	it	take	to	run	algorithm?	
Often,	we	deal	with	estimates!

Algorithm	complexity

Space	complexity	

❑ Space	complexity	S(p)	of	an	algorithm	is	the	total	space	in	memory	taken	by	the	algorithm	to	complete	its	execution	with	

respect	to	the	input	size	
S(p)	=	CONSTANT	SPACE	+	AUXILARY	SPACE	
Constant	space	:	is	the	space	fixed	for	that	algorithm,	generally	equals	to	space	used	by	input	and	local	variables	
Auxilary	space	:	is	the	extra/temporary	space	used	by	an	algorithm	

ONLY	THE	AUXILARY	PART	SHOULD	BE	CONSIDERED			
S(p)	=	C	+	S(auxilary)	=	S(auxilary)

Algorithm	complexity

						

	Summation	

Input:	a,	b,	c	

					return	a	+	b	+	c	

End	

S(p)	=	1	+	1	+1	=	3	➔ No	Auxilary	

						

	Summation	

Input	(a,	n)	

Sum	=	0	

for	i	in	range	(n)	

											sum	=	sum	+	a[i]	

end	for	

return	Sum	

End	

S(p)	=	(n*1	+	1	+1)	+	1	=	n	+	1	➔ Auxilay	=	1	

Space	complexity	

Algorithm	complexity
Time	complexity	

❑ Time	complexity	of	an	algorithm	signifies	the	total	time	required	by	the	program	to	run	till	its	completion.	

The	time	complexity	of	algorithms	is	most	commonly	expressed	using	the	Big	O	notation.	
Big	O	notation	gives	an	uper	bound	of	the	complexity	in	the	worst	case,	helping	to	quantify	performance	as	the	

input	size	becomes	arbitrarily	large.

We	analyze	time	complexity	only	for	:	

a) 	Very	large	input-size	

b) 	Worst	case	scenario

Algorithm	complexity

						Big	O	notation	

n:	the	size	of	the	input	

Complexities	ordered	from	smallest	

	to	largest	

	 Constant	Time:	O(1)	

	 						Linear	Time:	O(n)	

		 Quadratic	Time:	O(n2)	

																		Cubic	Time:	O(n3)

Time	complexity

Time	complexity	

	 	

	 Big	O	properties:	

T(n)	is	a	function	describing	the	running	time	

of	a	particular	algorithm	for	an	input	of	size	n:	
T(n)	=	n3	+	3n2	+	4n	+	7	
T(n)	≈	n3		(n	à ∞)	
								≈	c	n3		=	O(n3)

Rule	1:		a)	Lower	order	terms	should	not	be	considered	

b)	Constant	multiplier	should	not	be	considered	

Example:	T(n)	=	17	n4	+	3	+	4n	+	8	=	O(n4)

Algorithm	complexity

Time	complexity	

	 Big	O	properties:
Rule:	Running	Time	=	∑	Running	Time	of	all	fragments

For	i	=	0	to	n;	
//simple	statements	

Simple	loop	
Fragment	2	

O(n)

int	a;	
a	=	5	
a++;	

Simple	statements	
Fragment	1	

O(1)

for	(i	=	0	;	i<n	;	i++)	
	 			{	
	 						for	(j	=	0;	j<n;	j++)	
	 							{	

															//simple	statements	
	 								}	
	 					}	

nested	loop	
Fragment	3	

O(n2)

Algorithm	complexity

Time	complexity	

	
function	
{	
int	a;	
a	=	5;	
a++;	
If	(some	condition)	
{	
					for	(i	=	0	;	i<n	;	i++)	
											{	
														//	simple	statements	
											}	
}	
Else	
{	
					for	(i	=	0	;	i<n	;	i++)	
										{	
														for	(j	=	0;	j<n;	j++)	
	 							{	
															//simple	statements	
	 								}	
											}	
}	
}

O(1)

O(n)

O(n2)

T(n)	=	O(1)	+	O(n)	

or	

T(n)	=	O(1)	+	O(n)	+	O(n2)	≈	O(n2)

Rule:	

	Conditional	Statements:		

										Pick	complexity	of	condition	which	is	worst	case	

Algorithm	complexity

▶ Algorithm	is	a	step-by-step	procedure	to	solve	problems	

▶ The	types	of	algorithms	depends	on	the	type	of	task	to	be	solved.	

▶ Algorithms	are	classified	based	on	the	strategy	used	for	solving	problems.	

▶ Algorithms	can	be	expressed	in	:	natural	languages,	pseudocode,	and	flowcharts.	

▶ In	one	algorithm	you	could	call	another	algorithm	“concept	of	subalgorithm”.	

▶ Algorithm	complexity	is	seen	as	Space	complexity	and	time	complexity.

Take-home	messages

Thank	you	for	your	attention

